
 The volume of the universe after inflation   and de Sitter entropy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP04(2009)118

(http://iopscience.iop.org/1126-6708/2009/04/118)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 10:30

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/04
http://iopscience.iop.org/1126-6708/2009/04/118/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
4
(
2
0
0
9
)
1
1
8

Published by IOP Publishing for SISSA

Received: February 4, 2009

Accepted: April 13, 2009

Published: April 28, 2009

The volume of the universe after inflation

and de Sitter entropy

Sergei Dubovsky,a,b Leonardo Senatore,c,d,e and Giovanni Villadorof

aDepartment of Physics, Stanford University,

Stanford, CA 94305, U.S.A.
bInstitute for Nuclear Research of the Russian Academy of Sciences,

60th October Anniversary Prospect, 7a, 117312 Moscow, Russia
cSchool of Natural Sciences, Institute for Advanced Study,

Olden Lane, Princeton, NJ 08540, U.S.A.
dJefferson Physical Laboratory, Harvard University,

Cambridge, MA 02138, U.S.A.
eCenter for Astrophysics, Harvard University,

Cambridge, MA 02138, U.S.A.
fCERN, Theory Division,

CH-1211 Geneva 23, Switzerland

E-mail: dubovsky@stanford.edu, senatore@physics.harvard.edu,

giovanni.villadoro@cern.ch

Abstract: We calculate the probability distribution for the volume of the Universe after

slow-roll inflation both in the eternal and in the non-eternal regime. Far from the eternal

regime the probability distribution for the number of e-foldings, defined as one third of the

logarithm of the volume, is sharply peaked around the number of e-foldings of the classical

inflaton trajectory. At the transition to the eternal regime this probability is still peaked

(with the width of order one e-folding) around the average, which gets twice larger at the

transition point. As one enters the eternal regime the probability for the volume to be

finite rapidly becomes exponentially small. In addition to developing techniques to study

eternal inflation, our results allow us to establish the quantum generalization of a recently

proposed bound on the number of e-foldings in the non-eternal regime: the probability for

slow-roll inflation to produce a finite volume larger than eSdS/2, where SdS is the de Sitter

entropy at the end of the inflationary stage, is smaller than the uncertainty due to non-

perturbative quantum gravity effects. The existence of such a bound provides a consistency

check for the idea of de Sitter complementarity.

Keywords: Cosmology of Theories beyond the SM, Models of Quantum Gravity, Space-

Time Symmetries, Spacetime Singularities

ArXiv ePrint: 0812.2246

c© SISSA 2009 doi:10.1088/1126-6708/2009/04/118

mailto:dubovsky@stanford.edu
mailto:senatore@physics.harvard.edu
mailto:giovanni.villadoro@cern.ch
http://arxiv.org/abs/0812.2246
http://dx.doi.org/10.1088/1126-6708/2009/04/118


J
H
E
P
0
4
(
2
0
0
9
)
1
1
8

Contents

1 Introduction 1

2 From bacteria to inflation 8

2.1 Review of bacteria model 8

2.1.1 An example: the 2-sites case 12

2.2 The equation for ρ(V ) 13

3 Probability distribution of the volume after inflation 15

3.1 Moments of the probability distribution and critical points 17

3.2 Ω ≫ 1: classical limit 22

3.3 Ω ≥ 1: approaching the phase transition 27

3.4 Ω . 1: inside eternal inflation 31

3.5 Ω = 0: Deeply inside eternal inflation 36

3.6 Realistic models: finite barrier effects and slow roll corrections 37

4 Discussion 40

A Volume average from the inflaton stochastic equation 44

1 Introduction

The Universe is accelerating today [1–3], and it is extremely likely that it was experiencing

a period of accelerated expansion (inflation) back in the past [3–6]. In both cases the

pressure to density ratio is very close to −1 and the local geometry is very close to that of

de Sitter (dS) space.

It is plausible that both these periods of inflation are eternal, i.e. some space-time

regions keep inflating forever. Indeed the most economical explanation for the cosmic

acceleration observed now is that we are stuck in a metastable vacuum [7], and this results

in eternal inflation unless the vacuum decay rate Γ is faster than the expansion rate of the

Universe, Γ & H0.
1 Also there is strong evidence that in the past we underwent a phase

of inflation driven by a rolling scalar field, which could have been preceeded by a period of

eternal inflation, as predicted in many field theoretical models [9–11]. Further, the current

picture of the string landscape [12] suggests that the observed part of the Universe was

created as a result of tunneling from some higher-scale eternally-inflating vacuum [13]. All

these arguments make the study of eternal inflation very important.

1 This latter possibility appears rather unlikely and fine-tuned given the non-perturbative nature of the

decay, although it may receive support from future particle physics data [8].
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Moreover eternal inflation provides a natural framework to implement Weinberg’s so-

lution of the cosmological constant problem [14], which is the most plausible so far in spite

of the many efforts made to find an alternative. According to this solution the choice

of the vacuum is made, at least partially, by anthropic reasons such as the requirement

that structures were able to form in our Universe. These arguments raise the notoriously

difficult and puzzling question of making predictions in an eternally inflating Universe.

On a purely practical side we possess a well developed machinery of quantum field

theory in curved space-time that proved to be very successful in calculating properties

of the primordial density perturbations with many fine details in the case of non-eternal

inflation (see e.g. [15]). The applications of these techniques to the case of eternal inflation is

instead much more challenging, as in this latter regime the size of the quantum fluctuations

is large, a non-perturbative treatment is required and calculations become in general much

more difficult (see e.g. [16] for a recent discussion). On the other hand, without a clear

understanding of the eternally inflating geometry, it might be hopeless to solve the issues

raised by eternal inflation such as the measure problem in the landscape; this is why we

find it very important to make explicit and precise calculations in this regime.

On a more theoretical side, dS space appears to share many properties with the black

hole geometry — most importantly, in both space-times the most natural sets of observers

(the asymptotic observers in the black hole case and the comoving ones in the accelerating

Universe) see a gravitational horizon with the associated thermodynamic properties, such

as Hawking temperature and Bekenstein entropy, the latter, in the case of de Sitter, being

equal to [17]

SdS = π
M2

Pl

H2
,

where M2
Pl ≡ 1/GN with GN the Newton constant. A finite entropy suggests that the

system is described by a finite number of degrees of freedom, or more formally, the Hilbert

space describing the system at the quantum level has a finite dimensionality equal to eSdS .

It is widely believed that both black holes and de Sitter space always arise as a subsector of

a larger theory with an infinite dimensional Hilbert space. This is obvious for a black hole

in asymptotically Minkowski or adS space-times, but less clear for dS space. Indeed, in

principle one could imagine a quantum gravity theory with, for example, a single positive

energy vacuum. However, this is not the case in the known string theory landscape [18]

and there are general arguments strongly suggesting that dS vacua are always metastable

with respect to decay to either the Minkowski or the adS minima of the potential [19].

This will be the point of view adopted in the current paper and by dimensionality of the

Hilbert space describing black hole or dS space we always understand the dimensionality

of the corresponding subsector in a larger, most likely infinite-dimensional, Hilbert space

(although, it is worth noting that an alternative line of thought is also being pursued [20]).

Taking seriously the similarity between the causal structures of de Sitter and Schwarz-

schild causes a serious doubt on the validity of the global semiclassical picture of the

eternally inflating Universe.2 Indeed, the remarkable fact about black holes is that the

2This idea is being pursued by a number of authors, see e.g., [21]. Our discussion mainly follows that

of [22].
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Figure 1. Set of space-like slices covering both the exterior and the interior of: a) a black hole

(left) and b) an eternal inflating universe (right).

global effective field theory description of the space-time claiming to describe both the

interior and the exterior of the horizon eventually breaks down (see e.g. [23]).

More concretely, if one considers the set of space-like slices covering both the exterior

and the interior of a black hole, as shown in figure 1a, and insists that the field theory

description is valid on this set of slices, one comes to the conclusion that the information

is lost in the course of the black hole evaporation [24]. This conclusion was proven to be

wrong [25, 26] by the adS/CFT correspondence that provides a description of the system

involving black holes (gravity in the bulk adS space) in terms of an unitary boundary CFT.

Consequently, one is forced to conclude that the global effective field theory description

breaks down at the time scale of order the evaporation time, t ∼ R3
s/GN , where Rs is

the Schwarzschild radius and GN the Newton constant (for a recent review see for exam-

ple [22]). After this time the information about the inside observer gets reprocessed in

the evaporating Hawking quanta, and by insisting on a simultaneous local description of

the exterior and the interior on longer time-scales one would run into a contradiction with

the “no quantum xerox” principle (or equivalently with the linearity of quantum mechan-

ics) [27, 28]. This conclusion is really surprising given that one can always choose a set of

slices that avoid the region close to the singularity, so that naively one would expect the

effective field theory to hold.

Given the similarity between the causal structures of de Sitter space and that of

Schwarzschild geometry, one may suggest that also in dS space the global description

in terms of a similar set of slices (shown in figure 1b) eventually breaks down. Note that

these slices are just the conventional FRW slices that are commonly used to describe the

inflationary Universe. Going on with the analogy with the black holes one expects this

breakdown to happen at a time-scale of order t ∼ H−3/GN or, equivalently, after a pe-

riod of order SdS e-foldings. One may expect that space-time events outside the region

containing eSdS Hubble patches get encoded in de Sitter fluctuations, similarly to how the

information inside the black hole gets released in the Hawking quanta after the evaporation

time.

Note that, unlike in the black hole case, we are not running into any paradox if this

does not happen, therefore it may well be that pushing the analogy this far is too naive.

– 3 –
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However, if one takes it seriously there is an immediate test to pass. Indeed, in the

black hole case, due to the presence of a curvature singularity, it is impossible to read the

information in the Hawking quanta and then jump into the black hole and read the same

information again. Similarly, it should not be possible to get the same information twice

in the de Sitter case as well.

However, if inflation could last for an arbitrarily long time without becoming eternal, an

observer would be able to first read the information in the dS fluctuations and later, as more

and more space-time becomes visible after inflation, he would be able to access it directly.

Consequently, for the above ideas about de Sitter complementarity to be consistent, there

should be a limit on how long inflation can last without becoming eternal [22],

3N ≤ cSdS , (1.1)

where N is the number of e-foldings (defined as one third of the logarithm of the total

volume after inflation) and c is a coefficient of order one. On the other hand, no limit on

the number of e-foldings is required on those realization that are eternal, because in those

cases the observer is not able to access all the volume after reheating.

It was proven in [22] that the bound (1.1) indeed holds for the classical inflaton trajec-

tory in any theory of inflation that does not allow violations of the null energy condition,

ρ+ p ≥ 0 ,

where ρ and p are the energy density and the pressure. On the other hand, violation of

the bound (1.1) is possible in theories able to violate the null-energy condition, such as

ghost inflation [29]. This is actually encouraging and supports arguments establishing the

link between horizon complementarity and duration of inflation, as also the conventional

black hole thermodynamics breaks down in theories where the null energy condition can

be violated [30, 31].

There are two reasons leading to an uncertainty in the numerical value of the coefficient

c in the bound (1.1) as proven in [22]. First, at the time when the bound was proposed

the exact condition for inflation to become eternal was unknown, and it was not even clear

whether there is a sharp distinction between eternal and non-eternal regimes. This issue

was addressed in [16] and the conclusion is that there is a sharp transition between these

two regimes, with the condition not to have eternal inflation being

Ω ≡ 2π2

3

φ̇2

H4
≥ 1 , (1.2)

where φ̇ is the classical velocity of the inflaton field.

Now it is straightforward to find a bound on the number of e-foldings for the classical

inflaton trajectory in single-field slow-roll inflation in the non-eternal regime. Namely, one

writes
dSdS

dNc
≡ M2

PldH
−2

Hdt
= −2M2

PlḢ

H4
= 12Ω , (1.3)

where at the last step we made use of the second Friedmann equation. By integrating (1.3)

and using the condition (1.2) for the absence of eternal inflation we obtain (1.1) with the

– 4 –
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value c = 1/4,

3Nc ≤
SdS

4
, (1.4)

where Nc is the number of e-foldings on the classical inflaton trajectory.

However, this does not establish the sharp version of the bound (1.1) yet. There is

another reason for the uncertainty in the bound (1.1). Namely, the above analysis (and

that of [22]) is restricted to the classical inflaton trajectory. This approximation clearly

breaks down when Ω is of order (but still larger than) one, so that inflation is close to be

eternal. In this case, even though inflation is not eternal, the typical inflaton trajectory

is very different from the classical one and can be much longer. More generally, at the

quantum level for any value of Ω there is always a non-vanishing probability for the actual

inflaton trajectory to be long enough to violate the bound (1.1) for any value of c.

In this situation it is natural to study what is the probability distribution for inflaton

trajectories of different lengths — in other words, what is the probability distribution for

the volume of the Universe ρ(V ) after inflation. It is not clear a priori what the natural

generalization of the bound (1.1) should look like at the quantum level. One might expect

that there exists a value of c such that the probability to violate (1.1) is suppressed, for

example as non-perturbative quantum gravity effects e−SdS (which would correspond to

ρ(V ) ∼ 1/V α) or even more, for example exponentially with the volume ρ(V ) ∼ e−V

(which would correspond to order e−e
SdS effects). What we find from our analysis is that

such value of c exists (it is c = 1/2) and that the probability associated to the violation of

the bound is actually super-exponentially small, i.e. ∼ e−e
SdS .

To achieve this goal we obtained another result of independent interest. Namely, we

calculated in an explicit form the probability distribution for the volume of the Universe

after slow-roll inflation ρ(V ) both in eternal and non-eternal regimes. This offers further

insight in the actual geometry of the eternally inflating spacetime. While, unlike the density

perturbation spectrum, this quantity is not of much interest for current observations, it

still appears to be one of the natural “theoretical” observables to look at in the study of

eternally inflating Universes. In particular, according to [16], the order parameter for the

transition to eternal inflation is the normalization of ρ(V ),

Pext =

∫ ∞

0
dV ρ(V ) . (1.5)

At Ω > 1 this quantity is equal to 1, in agreement with the naive expectation. However,

at Ω < 1 the normalization Pext becomes smaller then 1, indicating that there is a non-

zero probability (1 − Pext) for the reheating volume to be infinite, i.e. for inflation to

last forever. In this paper we will rederive this result in yet another, somewhat more

explicit, way. It is also worth noting that recently the far exponential tail of the probability

ρ(V ) was calculated in [32] in the eternal regime. This result was used there to define a

“reheating-volume” measure for observables after eternal inflation. It appears that the

explicit expression for ρ(V ) has good chances to be useful in further theoretical studies of

de Sitter space and eternal inflation.

The rest of the paper is organized as follows. We start section 2 with a review of

the discrete stochastic branching process introduced in [16] to describe inflation. Then

– 5 –
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we use this model to derive a differential equation (2.22) for the Laplace transform of

the probability distribution ρ(V ). Similar discrete models were used in [33] and they

are essentially equivalent to the stochastic description of inflation by Starobinsky [34].

Within the stochastic approach equation (2.22) is known as the “non-linear Fokker–Planck

equation” [35].

In section 3 we provide approximate solutions for the equation (2.22) and calculate

the probability distribution in different regimes. We start with a discussion of the general

properties of the solutions of (2.22), and rederive in a new and very explicit way that

Ω = 1 is the transition point to the eternally inflating regime, i.e that Pext = 1 for

Ω > 1 and Pext < 1 for Ω < 1. Then in section 3.1 we study the moments of the volume

distribution. We show that there is a simple way of calculating them without actually

solving equation (2.22) and performing the Laplace transform. In agreement with the

results of [16] we prove that at Ω > 1 sufficiently high moments diverge for any value of

Ω if the inflaton field is allowed to take arbitrarily high values. We find the values Ωn

such that the n-th moment diverges at Ω < Ωn, and illustrate our method by explicitly

calculating the average and the variance.

In section 3.2 we start analyzing the properties of the probability distribution by

performing the Laplace transform. First, we consider the semiclassical limit Ω ≫ 1, and

find an approximate solution for eq. (2.22) in this limit. It turns out that because of

the non-commutativity of the large-volume and the large-Ω limits this solution does not

capture correctly the large volume tail of the probability distribution where the probability

becomes smaller than ∼ e−Ω. The study of this solution is also instructive for developing

an intuition on how to perform the Laplace transform of the solutions of eq. (2.22). In

section 3.3 we apply this intuition for general Ω > 1, when it is not possible to find

an approximate solution to (2.22) in closed form. By solving this equation in different

regimes one can obtain enough information to reconstruct the probability distribution in

the physically relevant case N ≫ 1. ρ(V ) turns out to be peaked around the average value

N =
2Nc

1 +
√

1 − Ω−1
. (1.6)

For N < N it takes the following Gaussian form

ρ(N) ≃ N e−
(3N−3N )2

2σ2 , Ω > 1 (1.7)

where the width σ is equal to

σ2 =
2

Ω(1 +
√

1 − Ω−1)2
. (1.8)

As Ω approaches the transition point, Ω = 1, the width σ becomes of order one, which is

still narrow in the regime of large number of e-foldings, N ≫ 1, the one we are interested

in. So the most important consequence of the change of Ω is that the average number of

e-foldings N changes. In agreement with the naive expectation it increases as Ω approaches

the transition point, but it does not grow a lot: at Ω = 1 the average number of e-foldings

is twice as large as the classical one.

– 6 –
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Figure 2. Typical shape for the probability distribution of the volume ρ(V ). For small volumes

the behavior is gaussian with the number of e-foldings (ρ ∼ e−c(N−N)2); for volumes larger than

the average value V , ρ(V ) follows a power law in the volume (ρ ∼ 1/V α) that eventually turns into

an exponential law (ρ ∼ e−const·V ) at large enough volumes (V & Vb). When Ω < 1 the exponential

tail starts earlier at V ≃ Vǫ = eπ/(2
√

1−Ω).

At large volumes, N & N , the probability distribution becomes exponential in N (or,

equivalently, power-law in the volume V ),

ρ(N) ∝ e
−6ΩN

“

1+
q

1− 1
Ω

”

= V
−2Ω

“

1+
q

1− 1
Ω

”

. (1.9)

Then we proceed with the eternal inflation regime. First, we study what happens in

the vicinity of the transition point, i.e. when Ω = 1 − ǫ with 0 < ǫ ≪ 1. We find that

the probability distribution ρ(N) is not changed until N ∼ π/(6
√
ǫ). At large volumes,

N & π/(6
√
ǫ), it becomes much more strongly suppressed, ρ(N) ∝ e−const·e3N . This

behavior is easier to interprete in terms of the volume distribution ρ(V ) (rather than the e-

folding distribution ρ(N)). It indicates that if the volume gets large enough, V & eπ/(2
√
ǫ),

the probability for inflation to terminate is exponentially small Pext ∝ e−const·V . Related

to that, we find that the total probability for inflation to terminate is of order e−Ω(3Nc)2

(this also applies for ǫ ∼ O(1)), indicating that it is saturated by the small-N tail of

the Gaussian distribution (1.7). This behavior smoothly matches with yet another regime

where one can find the probability distribution explicitly—Ω ≃ 0. Here the probability

distribution ρ(V ) is exponentially small ρ(V ) ∝ e−V/2 for all volumes of interest, V ≫ 1.

All these considerations were made in the approximation where the inflaton potential

goes up to arbitrary high values of the inflaton field. This is clearly unrealistic and we

conclude in section 3 by discussing what happens in the presence of a “barrier” at large

values of the inflaton field. As expected, the presence of a barrier affects only the far

– 7 –
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tail of the volume distribution by making it exponentially suppressed at large volumes,

ρ(V ) ∝ e−const·V , for any value of Ω. Note that if the initial value of the inflaton field

is not too close to the barrier, this effect is relevant only for inflaton trajectories whose

probability is smaller than the uncertainty coming from non-perturbative quantum gravity

effects (∼ e−SdS). The various behaviors of the probability distribution are summarized in

figure 2 that shows the shape of ρ(V ) in the different regimes of the volume.

These results imply that the quantum version of the bound (1.1) does hold with

c = 1/2. In the concluding section 4 we give the physical explanation of the behav-

ior of the probability distribution and show that an inflaton trajectory with more than

SdS/6 e-foldings and such that inflation terminates globally in the entire space is super-

exponentially improbable. We also speculate on the possibility that the value c = 1/2 for

the coefficient in (1.1) that we obtained in our analysis might have a natural physical in-

terpretation. In the appendix we cross check our results by calculating the average volume

directly from the inflaton stochastic equations.

2 From bacteria to inflation

As explained in the introduction, we want to calculate and study the probability distri-

bution ρ(V, φ) of the reheating volume given a certain initial value of the field φ. This

calculation does not seem to be straightforward, as the only available definition of the

distribution is a rather formal functional integral formula [16]

ρ(V, φ) =

∫

Dφ̄ P[φ̄, φ] δ

[

V −
∫

d3x e3Htr(~x)

]

, (2.1)

where Dφ̄ is some vaguely defined measure on the set of all possible space-time realizations

of the inflaton field, P[φ̄, φ] is the probability of a specific realization and tr(~x) is the

reheating time for a given realization as a function of the comoving coordinate ~x. Evaluating

directly the functional integral is of course a very hard task. As usual with functional

integrals, in order to gain more control it is natural to switch to a discretized description of

the inflationary dynamics. This approach has been recently developed in [16] and similar

models have also been studied in the context of eternal inflation in [33]. Up to small

extensions, section 2.1 is mainly a review of the results in [16], which we use to derive the

formula for the probability distribution ρ(V, φ) in section 2.2. The resulting solution for

ρ(V, φ) will be discussed in section 3. As a cross-check of the method, in the appendix we

also present a direct computation of the volume average.

2.1 Review of bacteria model

With a biological analogy, consider at t = 0 a bacterium that can live in a discrete set of

positions along a line (see figure 3). At t = 1 the bacterium replicates into Nr copies. Then,

each bacterium (independently of all the others) hops with probability p to the neighboring

site on its right, and with probability (1 − p) on the left. Nr and p are fixed numbers. At

t = 2 each second-generation bacterium reproduces itself, and so on. The analogy with the

inflationary system is clear: each bacterium represents an Hubble patch; sites are inflaton

– 8 –
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i+1 1 0

p1−p

i i−1

Figure 3. The branching process.

values. Reproduction is the analogue of the Hubble expansion; at every e-folding ∼ e3 new

Hubble volumes are produced starting from one. From then on the inflaton inside each

Hubble volume evolves independently, with a combination of classical rolling and quantum

diffusion. This is represented by the random hopping of our bacteria. The difference in the

probabilities of moving right and left gives a net drift, and thus corresponds to the classical

motion. To complete the analogy we have to assume that there is a “reheating” site, i = 0

in the figure: when a bacterium ends up there it stops to reproduce and to move around —

it dies. In the bacteriological analogy the reheating volume corresponds to the number of

dead bacteria (= non-reproducing Hubble patches) in the asymptotic future. For analogy

we denote the latter quantity by V , which of course now takes discrete values. Our task

is to study the probability distribution of V as a function of the parameter p. A discrete

system like the one we described goes under name of branching process, more precisely a

multi-type Galton-Watson process (see e.g. ref. [36]).

To connect to the inflationary case, if φ is the inflaton, and t is the time of the FRW

metric, one can make the following identifications in terms of the position j, time-step n,

field-space interval ∆φ and time interval ∆t,

j =
φ

∆φ
, n =

t

∆t
. (2.2)

By taking the continuum limit ∆φ,∆t→ 0 in such a way that

∆t =
4π2

H3
(∆φ)2 , (2.3)

where H is the Hubble rate in the inflationary process, and by defining Nr as

Nr = 1 + 3H∆t , (2.4)

and p by the relationship

(1 − 2p)
∆φ

∆t
= φ̇ ⇒ p =

1

2
+

√
6π2Ω

∆φ

H
, (2.5)

the equation for the probability of a bacterium to be at site j at time n becomes the

stochastic equation for the inflaton [10, 11, 34]

4π2

H3
∂tP (φ̄, t) =

1

2
∂2
φ̄P (φ̄, t) +

2
√

6π2Ω

H
∂φ̄P (φ̄, r) , (2.6)

– 9 –
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where P (φ̄, t) is the probability that the inflaton φ after a time t has a value φ̄. In [16]

general arguments establishing the matching with the continuum limit were presented and

checked in several calculations performed both in terms of the bacteria model and of the

inflaton.

Let us therefore study in more detail the bacteria model, and consider a branching

process on a line of length L. A convenient tool to study the branching process is the set

of generating functions f
(n)
i (sj), where i, j = 0, . . . , L. These are defined as power series

f
(n)
i (sj) =

∑

k1...kL

p
(n)
i;k0...kL

sk00 . . . skLL , (2.7)

where p
(n)
i;k0...kL

is the probability that, in a branching process that started with a single

bacterium at the i-th site after n steps, one has k0 bacteria at the zeroth site, k1 bacteria

at the first site, etc. It is convenient to combine together all functions f
(n)
i with the

same number of steps n into a map Fn from the L+ 1-dimensional space of the auxiliary

parameters si into an L + 1-dimensional space parameterized by the fi’s. Also in what

follows we will sometimes drop the subscript from the si variables and denote by s a point

in the L+ 1-dimensional space with coordinates (s0, . . . , sL). For example, for a branching

process of the sort as described in figure 3, F1 is given by

f
(1)
0 (s0, . . . , sL) = s0 , (2.8)

f
(1)
1 (s0, . . . , sL) = ((1 − p)s2 + p s0)

Nr ,

...

f
(1)
i (s0, . . . , sL) = ((1 − p)si+1 + p si−1)

Nr ,

...

f
(1)
L (s0, . . . , sL) = ((1 − p)sL + p sL−1)

Nr ,

where we have made a specific choice of boundary conditions at the site L, which we will

refer to as the “barrier”. The particular choice of the boundary condition will affect only

very marginally our results. The main property making generating functions useful is the

iterative relation

Fn+1 = F1(Fn) . (2.9)

This property is straightforward to check by making use of the definition of the branching

process and elementary properties of probabilities.

We will be interested in the late time behavior of the branching process, which is

determined by the asymptotic function F∞. The iterative property (2.9) implies that

F1(F∞) = F∞ , (2.10)

i.e. the set of values of the function F∞ is a subset of the fixed points of the function F1,

such that

F1(s) = s . (2.11)

– 10 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
8

s

f

fs
1

F(s)

s

s

1

1

F(s)

1

Figure 4. Left: Plot of F1(s) restricted to the hypercube IL and with s0 = 1, for large p (thick

curve). The only fixed point in the unit cube is s = 1. Further applications of F1 (thinner curves)

drive the curve to the F∞ = 1 line. right: For smaller p’s a new fixed point sf enters the unit cube.

Now the limiting line is F∞ = sf .

For our purposes it is enough to study the mapping F1 inside the L+ 1-dimensional cube

IL+1 of unit size, 0 ≤ si < 1. The definition (2.7) of the generating functions implies that

all partial derivatives of F1(s) are positive. Also, the normalization of probabilities implies

that

F1(1, . . . , 1) = (1, . . . , 1) ≡ ~1 .

In the bacteria model, it is rather straightforward to see how the transition to the

eternal inflationary regime happens. For this, it is useful to restrict the function F to the

L-dimensional hypercube IL with s0 = 1, which amounts to marginalizing over the number

of dead bacteria (see eq. (2.7)). Note that, if the mapping F1 has no other fixed points in

the cube IL apart from ~1 (see figure 4), then

F∞|s0=1 = ~1 .

By definition of the generating functions, eq. ( 2.7), this means that in the late time

asymptotics with probability one there are no alive bacteria at any of the sites. The

extinction probability is exactly equal to one (inflation ends). The situation changes when

a non-trivial fixed point sf solving eq. (2.11) enters the region IL (see figure 4). Now one

has

F∞|s0=1 = (1, sf ) < ~1 . (2.12)

This implies that, as before, the probability to have any finite non-zero number of alive

bacteria at any site vanishes. However, the probabilities to have zero bacteria at the various

sites,

p
(∞)
i;any,0...0 = f

(∞)
i (0) = (sf )i , i 6= 0 , (2.13)

are all less than one. This means that there is a non-vanishing probability that the popu-

lation never dies out and that the total number of bacteria grows indefinitely at late times.

This corresponds to the eternal inflation regime. Clearly, this implies that the number of
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p

01

1−p

Figure 5. The 2-site branching process.

dead bacteria also has a finite probability to grow indefinitely; in the context of eternal

inflation this translates into
∫ ∞

0
dV ρ(V, φ) < 1 .

In the continuum limit and with infinite barrier this transition happens at Ω = 1.

We would like to stress that F∞ is a function of s0 only. Mathematically this follows

from the convexity of F1 with respect to si, i 6= 0, from the fact that F1 is defined between

0 and 1, and that F1(~1) = ~1 (see figure 4). This can also be intuitively understood in the

following way: in the non-eternal regime, in the infinite future there is zero probability of

having any bacteria alive, so F∞ can not depend on any of the si, i 6= 0. In the eternal

inflation case, the population either extinguishes or becomes infinite. In either case, the

probability of finding a finite number of bacteria at any site is zero, which again forbids

any dependence on si, i 6= 0. Therefore, F∞ = F∞(s0). Eq. (2.10) for the fixed point then

becomes

f
(∞)
0 (s0) = s0 ,

...

f
(∞)
i (s0) =

(

(1 − p)f
(∞)
i+1 (s0) + p f

(∞)
i−1 (s0)

)Nr
,

...

f
(∞)
L (s0) =

(

(1 − p)f
(∞)
L (s0) + p f

(∞)
L−1(s0)

)Nr
. (2.14)

This is the set of equations that determine f
(∞)
i (s0). Once f

(∞)
i (s0) is found, one can

extract the asymptotic probability distribution p
(∞)
i;k0

using eq. (2.7).

2.1.1 An example: the 2-sites case

We find it instructive to illustrate the general formalism using a simple explicit example.

Consider the minimal branching process with just two sites and Nr = 2 copies at each

reproduction event (see figure 5). In this case the generating functions (2.7) are particularly

simple,

f
(1)
0 (s0, s1) = s0 ,

f
(1)
1 (s0, s1) =

(

(1 − p)s1 + ps0
)2
. (2.15)
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It is straightforward to apply here the generic results discussed in the last section. f
(∞)
i (s0)

is given by the fixed point of the mapping defined in eq. (2.15) inside the unit interval

0 ≤ si ≤ 1. We obtain

f
(∞)
0 (s0) = s0 , (2.16)

f
(∞)
1 (s0) =

1 − 2ps0 + 2p2s0 −
√

1 − 4p(1 − p)s0
2(1 − p)2

. (2.17)

The extinction probability is given by

Pext =
∞
∑

k=0

pk = f
(∞)
1 (1) =

1 − 2p + 2p2 −
√

(1 − 2p)2

2(1 − p)2
=







1 p > 1/2
(

p
1−p

)2
p < 1/2

, (2.18)

where pk ≡ p
(∞)
1;k 0. The extinction probability indeed drops below one for p < 1/2. We get

the quite intuitive result that the critical probability is pc = 1/2. By Taylor expanding

f
(∞)
i (s0), we can obtain the probability of the volume pk as in eq. (2.7)

f
(∞)
1 (s0) =

1

2(1 − p)2

∞
∑

k=2

(2k − 3)!

22k−2k!(k − 2)!
(4p(1 − p)s0)

k , (2.19)

which allows us to extract the large-k asymptotic of the probability distribution pk,

pk ∼
1

(1 − p)2
1

k3/2
e
−k log( 1

4p(1−p) )
. (2.20)

We see that the probability for large volumes goes to zero exponentially fast for any p 6=
pc = 1/2 (notice that 4p(1 − p) ≤ 1 for any p, and becomes equal to one only for p =

1/2). At p = pc the exponential suppression disappears and we are left with a power law

behavior, corresponding to the singularity of f
(∞)
1 (s0) at s0 = 1, as a result the probability

distribution becomes not normalized for p ≤ pc. This can be understood in the following

way. So far we have studied the probability distribution in the infinite time limit. If

instead we let the process go on only for a finite number of time steps n, the probability

distribution develops a bump at large volume (see [16] for details), which can be roughly

thought of as a piece proportional to Θ(1−Pext)δ(k−2n). For p ≤ pc, in the limit n→ ∞,

the δ−function migrates to infinity and makes all the moments of the volume diverge. In

our calculation, we can not see such a δ-function because we have already taken the limit of

infinite time steps, but still we are left with a non-normalized distribution. Because of this

even for p < pc all the moments of the volume diverge even if the probability distribution

goes exponentially fast to zero at infinity,.

2.2 The equation for ρ(V )

We want now to take the continuum limit of the bacteria model as explained in the begin-

ning of section 2.1. According to eq. (2.2), we define f (∞)(φ; s0) = f
(∞)
φ/∆φ(s0) so that the
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system in eq. (2.14) now becomes

f (∞)(0, s0) = s0 , (2.21)

...

f (∞)(φ; s0) =
(

(1 − p)f (∞)(φ+ ∆φ; s0) + p f (∞)(φ− ∆φ; s0)
)Nr

,

...

f (∞)(φb; s0) =
(

(1 − p)f (∞)(φb; s0) + p f (∞)(φb − ∆φ; s0)
)Nr

,

where φb represents the value of φ at the barrier.

By taking the limit ∆φ→ 0 ∆t → 0 according to the prescription given in eqs. (2.3),

(2.4), and (2.5) we obtain the following second order differential equation

1

2

∂2

∂φ2
f (∞)(φ; s0)−

2π
√

6Ω

H

∂

∂φ
f (∞)(φ; s0) +

12π2

H2
f (∞)(φ; s0) log

[

f (∞)(φ; s0)
]

= 0 , (2.22)

with the following two boundary conditions

f (∞)(0; s0) = s0 , (2.23)

∂

∂φ
f (∞)(φ; s0)

∣

∣

∣

∣

φb

= 0 .

in agreement with [32, 35] where the same equation has been obtained in a different way.

The second derivative term in eq. (2.22) comes from the quantum fluctuations of the inflaton

(equivalent to the random jumps of the bacteria), the first derivative term comes from the

classical drift (in fact it is proportional to Ω), and the log in the last term comes from the

production of independent Hubble patches (equivalent to the reproduction of bacteria).

This equation will be central in the rest of paper: f(φ; s0) is the Laplace transform of

the probability of obtaining a certain reheating volume starting from any initial value of φ.

Indeed, in the discrete model, from the definition in eq. (2.7), the generating function at

infinite time is connected to the probability pj,k of having k dead bacteria at infinite time

starting with one bacterium at the site j by

f
(∞)
j (s0) =

∞
∑

k=0

pj,k s
k
0 . (2.24)

Taking the continuum limit we get

f (∞)(φ; s0) =

∫ ∞

0
dV ρ(φ, V ) sV0 . (2.25)

This expression can be inverted to obtain the probability distribution for the volume

ρ(φ, V ) =
1

2πi

∫ γ+i∞

γ−i∞
d (− log(s0)) f

(∞)(φ; s0)e
−V log(s0) (2.26)
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where γ must be chosen such that Re(γ) > − log(ssing
0 ) for any singularity ssing

0 of f(φ; s0) .3

Notice that in eq. (2.26) we need to analytically continue the function f (∞)(φ; s0) to un-

physical values of s0 (s0 /∈ [0, 1]), which actually dominate the integral at large volumes as

we will see in section 3. We have therefore obtained a procedure to compute the proba-

bility distribution of the reheating volume: solve the differential equation (2.22), and then

perform the anti-Laplace transform (2.26).

3 Probability distribution of the volume after inflation

In the previous section we saw that the probability distribution of the volume can be

calculated in two steps. The first is to solve the differential equation (2.22). For convenience

we rewrite it here as

f̈(τ ; z) − 2
√

Ωḟ(τ ; z) + f(τ ; z) log[f(τ ; z)] = 0 , (3.1)

where the dot represents a partial derivative with respect to τ and f(τ ; z), τ and z are

related to f (∞)(φ; s0), φ and s0 of the previous section via

f(τ ; z) ≡ f (∞)(φ; s0) , (3.2)

τ ≡ 2π
√

6
φ

H
= 6

√
ΩNc , (3.3)

z ≡ − log(s0) , (3.4)

with Nc being the classical number of e-foldings (Nc ≡ −Hφ/φ̇). The solution f(τ, z) has

also to satisfy the following boundary conditions

f(0; z) = s0 = e−z , (3.5)

ḟ(τb; z) = 0 , (3.6)

and the constraint

f(τ ; z) ∈ [0, 1] . (3.7)

The second step is to calculate the integral

ρ(V, τ) =
1

2πi

∫ 0++i∞

0+−i∞
dz f(τ ; z)ezV , (3.8)

that gives the probability distribution ρ(V, τ) to find a volume V at the end of an infla-

tionary phase that started with the inflaton at the position φ = Hτ/(2π
√

6). Recall that

the volume V that enters in eq. (3.8) is dimensionless because it has been rescaled by the

initial volume V0 before inflation, i.e. V = Vol/V0, with Vol being the physical volume.

Notice that some properties of ρ(V ) can be obtained without evaluating the integral (3.8),

3 From eq. (2.25) we see that f (∞)(φ; s0) cannot have singularities for Re(log(s0)) < 0, therefore eq. (2.26)

holds for every γ > 0.
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f0s 1

τ=0

0

U(f)

τ

Figure 6. The potential U(f) of eq. (3.11). In the limit τb → ∞, the solution of the mechanical

problem (3.1) represents the motion of a particle starting at τ = 0 in f = s0, rolling uphill with an

anti-friction term and stopping on the top f = 0 in an infinite time.

but just by studying the solution f(τ ; z) around the point z = 0. Indeed the momenta of

the distribution are simply related to the Taylor coefficients of f(τ ; z) around z = 0 since

〈V n〉 =

∫ ∞

0
dV V nρ(V, τ) = (−1)n

∂nf(τ ; z)

∂zn

∣

∣

∣

∣

z=0

. (3.9)

It follows that the total probability to exit inflation globally is just fixed by f(τ ; 0),

Pext ≡
∫ ∞

0
dV ρ(V, τ) = f(τ ; 0) . (3.10)

We proceed now with the study of the solutions of eq. (3.1). This equation describes

the motion of the particle in a potential

U(f) =
f2

4

(

log f2 − 1
)

, (3.11)

with an anti-friction term (see figure 6). Unfortunately an explicit solution to eq. (3.1) is

not known. However we will still be able to recover many properties of ρ(V, τ) by analyzing

the analytic structure of the solution and by studying the problem in different limits. The

boundary conditions (3.5) and (3.6) as well as the condition f ∈ [0, 1] constrain the solution

to start from the point f = s0 at τ = 0 and to travel up-hill up to some point f∗ ∈ (0, s0)

where the velocity reaches zero at time τb. We will focus on the case where τb → +∞, and

come back to the case of finite τb at the end of this section. In the τb → +∞ case, the

solution has to reach zero velocity only after an infinite time, and in doing so, it has to

stay always within the interval f ∈ [0, 1]. The only way to achieve this is for the solution

to reach the top of the hill f = 0 in infinite time.
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Let us see that such a solution exists for any s0 < 1. Clearly for large enough initial

velocities the solution overshoots the maximum and goes to the f < 0 region, while for

small enough velocities, the solution does not reach the top. Therefore, there is a critical

initial velocity separating these two regimes such that the solution stops at f = 0 in an

infinite time. This can also be explicitly verified by finding, as we will show later, an

asymptotic form of this solution in the region 0 < f ≪ 1,

f ∼ e−
1
4
(τ+τ0)2 , (3.12)

where τ0 is an integration constant.

The case s0 = 1 is different. For a solution that starts at f = 1 at early times we can

approximate the potential U(f) with an harmonic oscillator to obtain

f̈ − 2
√

Ωḟ + f − 1 = 0 , (3.13)

whose general solution is of the form

f = 1 − e
√

Ωτ
(

Ae
√

Ω−1τ +Be−
√

Ω−1τ
)

. (3.14)

This shows that for Ω > 1 the solution is ’over-anti-dumped’ and does not have a turning

point, while for Ω < 1 the solution can oscillate. This behavior persists at the non-linear

level as well — it is straightforward to check that the turning force due to the poten-

tial (3.11) is always smaller than the turning force due to the harmonic potential in (3.13),

so that no turning point exists for Ω > 1 for the non-linear mechanical problem (3.1) as

well. Consequently, at s0 = 1 the solution that stops on the top of the hill exists only at

Ω < 1. This solution describes a non-trivial fixed point (2.12). Its presence indicates that

inflation is eternal at Ω < 1. Instead, at Ω > 1 the solution that reaches the top of the

hill in an infinite time τ → +∞ starts at f = 1 in the infinite past, τ = −∞; while all

solutions that start at f = 1 at finite time overshoot the top of the hill.

We illustrate the behavior of the solutions in the two different regimes in figure 7.

This plot makes very explicit the transition to the eternal regime at Ω = 1. At Ω > 1 by

taking the limit s0 → 1 one gets f(τ ; 0) = 1 for every τ so that the extinction probability is

Pext = 1. On the other hand, in the same limit at Ω < 1 one obtains a non-trivial function

f(τ ; 0) that leaves the origin in a time of order 1/
√

1 − Ω, therefore there is a non-vanishing

probability to inflate forever, Pext = 1 − f(τ ; 0).

In the following subsections we will present estimates for ρ(V, τ) in different regimes

and discuss finite-barrier effects. However, before entering the analysis of the probability

distribution itself, we would like to discuss first its moments, which can be derived exactly

in a straightforward way from the master differential equation (3.1).

3.1 Moments of the probability distribution and critical points

In spite of the fact that the phase transition happens at the critical value Ω = 1, in [16] it

was shown that, in the infinite barrier limit, the moments of the probability distribution

start diverging at different values of Ω: the higher the moment, the higher the value of Ω at

which they diverge. On the other hand, in the finite barrier case all the moments diverge

– 17 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
8

Figure 7. Schematic plots of the solutions f(τ ; z) as a function of τ for different choices of the

boundary condition z and for Ω > 1 (top) and Ω < 1 (bottom). For Ω > 1 when z → 0 the solution

approaches f(τ ; 0) = 1 for every finite τ ’s — the probability to end inflation globally is 1; for Ω < 1

in the same limit the solution approaches a non-trivial function with f(τ ; 0) ≪ 1 for large τ—the

probability to end inflation globally is small.

at the critical value Ω = 1. In the first part of this section, we will rederive these results in

a rather quick and different way, obtaining also the general formula for the critical value

Ω at which each moment diverge. Then, in the second part, we will describe a procedure

derived from the master differential equation (3.1) that allows us to easily compute the

explicit value of each moment as a function of Ω.

As shown in the previous section from eq. (3.9), it is possible to extract the moments

of the probability distribution ρ(V, τ) directly from f(τ ; z) without the need of performing
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explicitly the anti-Laplace transform. The n-th moment is indeed proportional to the n-

th derivative of f(τ ; z) with respect to z, at z = 0. Divergences in the moments thus

correspond to a non-analyticity of f(τ ; z) at z = 0. Therefore it is enough to study the

solution of the differential equation near the point z = 0. Notice that, before entering the

eternal regime, at Ω > 1, for every finite fixed value of τ and for smaller and smaller values

of z, the solution is better and better described by the linear approximation of eq. (3.14)

(see figure 7), which we conveniently rewrite here as

flin(τ ; z) = 1 − eω−(τ+τ0) − σeω+(τ+τ0) , (3.15)

where

ω± ≡
√

Ω ±
√

Ω − 1

and σ and τ0 are the two constant of integration. In the infinite barrier case the boundary

condition (3.6) corresponds to requiring that the solution stops on top of the hill (f = 0)

in an infinite time. Notice that since both this boundary condition and the differential

equation are invariant under shifts of τ we are left with a one-parameter family of solutions

that are related by a shift in τ , i.e. the parameter τ0. The latter is fixed by imposing the

boundary condition (3.5), namely

flin(0; z) = 1 − eω−τ0 − σeω+τ0 = e−z . (3.16)

This means that all the dependence on z is in the parameter τ0, while σ is fixed by the

boundary condition at infinity and is independent of z. Using eq. (3.16) the solution can

be rewritten as

flin(τ ; z) = 1 −
(

1 − e−z
)

eω−τ − σeω+τ0 (eω+τ − eω−τ )

≃ 1 − zeω−τ − σzω
2
+eω+τ , (3.17)

where in the second line we have used the approximate solution τ0 ≈ log(z)/ω− from

eq. (3.16) and dropped a subleading exponent in the last term.

Notice also that the last term, in general, is not analytic in z = 0. Indeed if we

calculate the n-th derivative of flin(τ ; z) with respect to z we get

f
(n)
lin (τ ; z) ∼ zω

2
+−neω+τ (3.18)

so that the moment 〈V n〉 starts diverging when ω2
+ becomes smaller than n, i.e. at

Ω =
(n+ 1)2

4n
. (3.19)

For instance, in the case of the variance (n = 2), we get Ω = 9/8 as critical value, in perfect

agreement with the lengthy calculation of [16] that used directly the inflaton stochastic

equations. In the presence of a finite barrier this argument breaks down because now also

σ depends on z and the analytic structure around the origin changes. In fact, for small

enough values of z, f(τ ; z) is still well described by the linear approximation around f = 1
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even at the barrier τb. It is not difficult then to solve the differential equation in the

linearized limit with a finite barrier. What we get in this case is

flin(τ ; z) = 1 − (1 − e−z)
eω+τ+ω−τb − ω2

+e
ω−τ+ω+τb

eω−τb − ω2
+e

ω+τb
, (3.20)

which is analytic in z = 0 for all values of Ω, implying that all the moments converge

for Ω > 1. Although we expect the linearized approximation to work better and better

as z → 0, we cannot be sure yet whether non-analytic terms may arise from subleading

non-linear corrections. Still this argument suggests that the finite barrier case behaves

differently than the infinite barrier case.

As a proof of this statement we will now present a method to derive exactly all the

moments. Indeed, even though we are not able to solve analytically the non-linear differ-

ential equation (3.1), the equations for the moments are linear and can be solved explicitly.

They can be obtained by simply deriving n times the eq. (3.1) with respect to z at z = 0.

For example by deriving (3.1) once with respect to z we get

f̈ ′ − 2
√

Ωḟ ′ + f ′ + f ′ log f = 0 , (3.21)

where “dots” represent derivatives with respect to τ and “ ′ ” with respect to z. Since for

z = 0 f = 1 we get a linear differential equation for f ′0 ≡ f ′(τ ; 0) = −〈V 〉 with solution

f ′0 = Aeω+τ +Beω−τ . (3.22)

The constants of integration A and B can be fixed using the derivative of the boundary

conditions (3.5) and (3.6), namely

f ′0(0) = −1 , ḟ ′0(τb) = 0 . (3.23)

This way we get

〈V 〉 = −f ′0(τ) =
eω+τ+ω−τb − ω2

+e
ω−τ+ω+τb

eω−τb − ω2
+e

ω+τb
, (3.24)

which in the large τb limit gives (see figure 8)

lim
τb→∞

〈V 〉 = eω−τ = e
3Nc

2

1+
√

1−1/Ω . (3.25)

This results nicely agrees with the explicit calculation from the inflaton equation (see the

appendix) and with the result from the probability distribution ρ(V, τ) that we will derive

in the next sections. Notice that for large Ω one recovers the classical limit for the average

volume Vc = e3Nc . With very little effort eq. (3.1) gave us the formula for the average

volume in both finite and infinite barrier cases.

Roughly with the same amount of work we can obtain also the expression for any

higher moment. By deriving eq. (3.21) with respect to z a second time we obtain

f̈ ′′ − 2
√

Ωḟ ′′ + f ′′ + f ′′ log f +
f ′2

f
= 0 , (3.26)
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Ω0

<V>

1

c3N
e

c6N
e

Figure 8. Average volume as a function of Ω, with Nc ≡ 2π2

Ω
φ
H = τ

6
√

Ω
.

which again gives a linear differential equation at z = 0,

f̈ ′′0 − 2
√

Ωḟ ′′0 + f ′′0 = −f ′20 , (3.27)

this time with a non-homogeneous source term. The latter however is an exponential,

therefore the differential equation can be easily solved analytically. Imposing the boundary

conditions

f ′′0 (0) = 1 , ḟ ′′0 (τb) = 0 , (3.28)

the result for the second moment is

〈V 2〉 = f ′′0 (τ) =
ω6

+e
2τ
ω+

+2τbω+

(

ω2
+ − 2

) (

eτb/ω+ − eτbω+ω2
+

)2 −
2ω4

+e
2τbω+

(

e
τb
ω+

+τω+ − e
τ
ω+

+τbω+
ω2

+

)

(

ω2
+ − 2

) (

eτb/ω+ − eτbω+ω2
+

)3

−
4ω2

+e
ω+τb+

τb
ω+

(

e
τb
ω+

+τω+ − e
τ
ω+

+τbω+
ω2

+

)

(

eτb/ω+ − eτbω+ω2
+

)3 +

2ω2
+e

2τb
ω+

(

e
τb
ω+

+τω+ − e
τ
ω+

+τbω+
ω2

+

)

(

2ω2
+ − 1

) (

eτb/ω+ − eτbω+ω2
+

)3

+
8ω2

+e
2ω+τb+

2τb
ω+
(

eτω+ − eτ/ω+
) (

ω2
+ − 1

)2 (
ω2

+ + 1
)

(

eτb/ω+ − eτbω+ω2
+

)3 (
2ω4

+ − 5ω2
+ + 2

)
+

2ω2
+e

ω+τ+
τ
ω+

+τbω++
τb
ω+

(

eτb/ω+ − eτbω+ω2
+

)2

− e
2τb
ω+

+2τω+

(

2ω2
+ − 1

) (

eτb/ω+ − eτbω+ω2
+

)2 , (3.29)

where the length of the expression indicates how non-trivial it would have been to obtain

this result directly from the inflaton equation. In the large barrier limit the asymptotic

form of eq. (3.29) for Ω > 1 reads

〈V 2〉 τb≫1−→ ω2
+

ω2
+ − 2

(

1 − 2
e−ω−τ

ω2
+

)

e2ω−τ+
8(ω2

+ − 1)2(ω2
+ + 1)

ω4
+(2ω+ − 1)(2 − ω2

+)
e−(ω2

+−2)ω−τb+ω+τ , (3.30)
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the divergence at ω2
+ = 2 (i.e. Ω = 9/8) is manifest, in particular the last term vanishes

for ω2
+ > 2 in the limit τb → ∞, while it explodes for ω2

+ ≤ 2. It is less manifest from

eq. (3.29) the fact that, with a finite barrier, there is no divergence; for this propose we

give here the expression for eq. (3.29) at Ω = 9/8

〈V 2〉
∣

∣

Ω=9/8
=

√
2τb(1 − e−τ/

√
2)e

√
2τ + . . . , (3.31)

which shows that, up to sub-dominant terms in the large barrier limit (the dots), the result

is finite but linear in τb, explaining the divergence in the infinite barrier case.

We could keep going calculating higher moments, indeed for the n-th moment we have

just to solve the following linear differential equation

f̈
(n)
0 − 2

√
Ωḟ

(n)
0 + f

(n)
0 = J (n) , (3.32)

f
(n)
0 (0) = (−1)n , (3.33)

ḟ
(n)
0 (τb) = 0 , (3.34)

where the source J (n) is a polynomium of degree n of the lower moments (f
(k)
0 with k < n)

J (n) = ∂nz [f(log f − 1)]|z=0 , (3.35)

which will then be a sum of exponentials of the form ekω±τ at most of degree k = n.

Iterating the analysis it is possible to check that, in the infinite barrier limit, the critical

value of Ω where the n-th moment diverges perfectly agrees with eq. (3.19), while for finite

barriers the moments converge for every Ω > 1.

3.2 Ω ≫ 1: classical limit

Let us now find approximations for the probability distribution ρ(V ) in different regimes

by directly using the Laplace transform formula (3.8). The first case we will study is the

limit Ω ≫ 1, which corresponds to the conventional slow-roll inflation, far from the eternal

regime. As expected, we will see explicitly that in this case the volume probability is

sharply peaked around the volume corresponding to the classical inflaton trajectory. The

main reason to start with this case is that we will be able to find an explicit solution to

the mechanical problem (3.1). This will help us to develop an intuition on how to proceed

also for generic values of Ω, where such a solution is absent.

To analyze the large Ω limit it is convenient to rescale the time variable τ as

τ = 2
√

Ωτ̃ . (3.36)

The new time variable τ̃ measures the number of classical e-foldings Nc,

τ̃ = 3Nc . (3.37)

Then the mechanical equation (3.1) takes the following form

1

4Ω

∂2f

∂τ̃2
− ∂f

∂τ̃
+ f log f = 0 . (3.38)
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It is useful to present f in the exponential form

f = e−g , (3.39)

then the function g satisfies

1

4Ω

[

∂2g

∂τ̃2
−
(

∂g

∂τ̃

)2
]

− ∂g

∂τ̃
+ g = 0 . (3.40)

The most straightforward way to do the large Ω expansion would be, as a zeroth order

approximation, to drop the first two terms in this equation. This would give

g = eτ̃+τ̃0 , (3.41)

where τ̃0 is an integration constant. This translates into

f = e−z e
τ̃
, (3.42)

when we fix τ̃0 to match the boundary conditions for f . The corresponding probability

distribution that we obtain from eq. (3.8) is

ρ(V, τ) = δ(V − e3Nc) , (3.43)

i.e. the inflaton follows the classical trajectory, exactly what expected in the classical limit

where quantum fluctuations can be neglected. However, there is a problem to use this

solution as a basis for a systematic expansion around 1/Ω = 0 because the corrections

due to the dropped terms in (3.40) are not always small. Indeed, for τ̃ ≫ log Ω one has

ġ2/Ω ≫ g, ġ in this case. We can get around this problem by keeping this dangerous term

in (3.40), and dropping only the very first one (similarly to the WKB approximation). Now

we have the following equation

1

4Ω

(

∂g

∂τ̃

)2

+
∂g

∂τ̃
− g = 0 (3.44)

that after integration gives g as a solution of the following algebraic equation,

GeG = eτ̃+τ̃0 , (3.45)

where

G =

√

1 +
g

Ω
− 1 .

For g/Ω ≪ 1 this gives back the previous result (3.41), while in the opposite limit g/Ω ≫ 1

one gets

g = Ω(τ̃ + τ̃0)
2 . (3.46)

Importantly, for this solution the dropped term g̈/Ω is small compared to the other ones

in (3.40) in both limits as long as Ω|G+1| ≫ 1. Therefore this solution provides a basis for a

consistent 1/Ω expansion which is valid everywhere apart in the small region |G+1| . 1/Ω.
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Let us see what probability distribution one gets from the above solution. We can find

τ̃0(z) by imposing the boundary condition

f(0; z) = e−z = e−g(τ̃=0) , (3.47)

which gives

eτ̃0(x) = AeA , (3.48)

where we have defined

A ≡
√

1 + x− 1 , x ≡ z

Ω
. (3.49)

Then expression (3.8) for the probability distribution takes the following form

ρ(V, τ) =
Ω

2πi

∫ 0++i∞

0+−i∞
dx e−Ω(G2+2G−xV ) , (3.50)

where G is a function of x via eqs. (3.45), (3.48) and (3.49). We can try to evaluate this

integral using the saddle point approximation (we will check later whether this is a good

approximation). The result reads

ρ(V, τ) ≈ Ω
√

2π|S′′(x0)|
e−S(x0) , (3.51)

where S(x) is given by

S(x) = Ω
(

G2 + 2G− xV
)

, (3.52)

and x0 is the saddle point satisfying the equation

S′(x0) = Ω

(

2(1 +G)G′ ∂τ̃0
∂x

− V

)∣

∣

∣

∣

x=x0

= 0 . (3.53)

By taking the derivative of (3.45), and plugging in the resulting expression for G′ into the

saddle point condition (3.53) one gets

G = V A (3.54)

at the saddle point. If we substitute this expression back in eq. (3.45) we get

GeG = AV eAV = Aeτ̃+A , (3.55)

⇒ A =
1

V − 1
log

(

e3Nc

V

)

. (3.56)

Note that for V < Vc ≡ e3Nc the value of A is positive and the saddle point is at real

and positive z (see figure 9). On the other hand for V > Vc the value of A is negative

and the saddle point is located at negative z.4 To understand when the saddle point

4This implies that for V > Vc the saddle point corresponds to a value for the boundary condition z

that is outside of the physical region z > 0. We are using the analytic continuation of the solution, as it is

implicit in the definition of the inverse-Laplace transform of eq. (3.50).
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V<V

Im z

Re z

ρ

VV

saddle point

saddle point ccut eVc

zcut cc V<<V

V <V<eVc                 c
cut

exp tail

power−law tail
true cut

Ω>>1

V>eVc

Figure 9. Contour of the anti-Laplace transform integral in the z-plane (on the left) and probability

distribution of the volume (on the right) for Ω ≫ 1. For small volumes the integral can be solved

via saddle-point approximation and gives a gaussian-like distribution (in blue). Near V = eVc the

saddle point hits the cut, the contour of integration can be deformed around the cut and for V > eVc

the distribution becomes exponentially small (in red). The large Ω limit does not capture the cut

between zcut and z = 0, which deforms the tail of the distribution (from a value of V ∈ (Vc, eVc)

where ρ(V ) ≈ e−Ω) making it power-like in the volume (in yellow).

approximation is applicable for calculating the integral (3.50) it is important to note that

our approximate solution has a branch cut starting at the point zcut ≈ −2Ωe−τ̃−1, where

G = −1 (equivalently, g = −Ω). An easy way to see this is to use eq. (3.44) as an equation

for ∂g/∂τ̃ , namely
∂g

∂τ̃
= 2Ω

(

−1 +

√

1 +
g

Ω

)

. (3.57)

We see that at g = −Ω there is a discontinuity in the imaginary part of ∂g/∂τ̃ along the

real axis in the g-plane at g < −Ω, leading to a cut for g as a function of z at real z < zcut.

From (3.54) and (3.56) we find that the saddle point hits the cut at V ≃ eVc. As

long as the saddle point does not hit the cut, i.e. for V . eVc, we can use the saddle point

approximation to perform the integral. Plugging the solution in eqs. (3.54) and (3.56) back

into S we get

S(x0) = Ω
(V − 1)

V
G2 = Ω

V

V − 1

[

log

(

V

Vc

)]2

, (3.58)

S′′(x0) = Ω(V−1)
2

(

1 −
log

“

V
Vc

”

V−1

)−1(

1
V −

log
“

V
Vc

”

V−1

)−1

, (3.59)

and thus

ρ(V, τ) ≈ N e
−Ω V

V−1

h

log
“

V
Vc

”i2

, V . eVc , (3.60)

where the prefactor N is equal to

N =
∣

∣

∣

Ω
π V (V−1)

(

1 − 1
V−1 log V

Vc

)(

1 − V
V−1 log V

Vc

)∣

∣

∣

1/2
.
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Notice that S′′(x0) is large for exponentially large volumes, making our saddle point ap-

proximation justified.

For large volumes (V ≫ 1) the formula (3.60) simplifies to

ρ(V, τ) ∼
√

Ω

π

∣

∣

∣

∣

log
eVc
V

∣

∣

∣

∣

1

V
e
−Ω

“

log V
Vc

”2

, V . eVc , (3.61)

which we can also rewrite as the probability distribution to have N e-foldings

ρ̃(N,Nc) = 3V ρ(V, τ) ∼ 3

√

Ω|3N − 3Nc − 1|
π

e−Ω(3N−3Nc)
2

, N . Nc . (3.62)

This distribution is a gaussian centered around the classical number of e-foldings Nc (see

figure 9). The spread is of order 1/
√

Ω and goes to zero as Ω goes to infinity reproducing

the δ-function of the classical limit.

When the volume becomes approximately eVc the saddle point reaches the cut and

we cannot perform the saddle point approximation anymore. In this regime, we can still

close the contour of integration on the left around the cut (see figure 9), and perform the

integral along the discontinuity. We obtain

ρ(V, τ̃ ) =
1

2πi

∫ +∞

|zcut|
d|z| 2i Im[f(τ̃ ;−|z|)]e−V |z| . (3.63)

It is straightforward to verify the |f(τ̃ ; z)| does not grow faster than e|z| at large z. There-

fore, at large volumes the integral above is dominated by values of z very close to the cut,

with a spread of the order 1/V . We can thus write approximately

ρ(V, τ̃ ) ∼ ezcutV ∼ e−2Ω
e
V/Vc , V & eVc , (3.64)

where we have ignored power corrections in the volume. We see that the probability

distribution has an exponential tail in V that starts many standard deviations away from

the average Vc. This result confirms that after the saddle point hits the cut one cannot

use it any longer to evaluate the Laplace transform. Indeed, if one keeps using the saddle

point approximation blindly one would obtain the gaussian behavior for the probability

distribution up to arbitrary large volumes, in contradiction to (3.64).

However, there is a problem with the behavior (3.64) as well. Namely, this result

disagrees with our analysis in section 3.1, where we found that high enough moments of

the volume distribution diverge at any value of Ω. Related to this, we proved there that

the function f has a cut starting at z = 0, while here we are finding the origin of the cut

at z = zcut < 0.

The origin of this discrepancy is the non-commutativity of the large Ω limit and the

large volume limit. One indication of the problem is that the large Ω expansion breaks in

the vicinity of G = −1—precisely where the cut of the approximate solution starts. Even

more relevant is the following observation. The leading non-analytic term in (3.17), that

gives rise to the cut starting at z = 0, is proportional to z4Ω. At small z this term is

non-perturbatively small in the large Ω expansion. However, it dominates the behavior
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of ρ(V ) at large volumes and gives rise to the power-law tail proportional to V −4Ω. Our

approximate solution misses the corresponding part of the cut between 0 and zcut. Note,

however, that this part of the cut becomes important only at volumes much larger than the

average, where the probability is exponentially suppressed in Ω, ρ(V ) ∝ e−Ω. Consequently,

our approximate solution correctly reproduces the shape of ρ(V ) up to V . eVc. At larger

volumes instead of the exponential behavior (3.64) one gets the power-law tail. In the next

section we will discuss this tail in more details for general Ω > 1.

3.3 Ω ≥ 1: approaching the phase transition

Let us now reconstruct the probability distribution of the volume for generic Ω ≥ 1.

Unlike in the previous case, we do not have any small parameter that allows us to find an

approximate full solution to the mechanical problem (3.1). However we will be able to find

an approximate form of the probability distribution ρ(V ) practically at all V .

In order to do this, we notice that we can solve the differential equation (3.1) (and

equivalently eq. (3.38)) in two different regimes. When f ≃ 1 (equivalent to g ≪ 1), we

can linearize the potential and obtain the solution

flin(τ ; z) = 1 − eω−(τ+τ0) − σeω+(τ+τ0) , (3.65)

where ω± ≡
√

Ω ±
√

Ω − 1 and σ and τ0 are integration constants. For the linear approxi-

mation to hold, it is enough to impose that τ + τ0 ≪ −1. Then, independently of the value

of σ, for large enough τ + τ0 we can approximate the solution as

flin ≈ 1 − eω−(τ+τ0) . (3.66)

The second regime in which we can solve the differential equation is when f ≃ 0 (equivalent

to g ≫ 1). In this regime the two dominant terms in (3.40) are those proportional to g

and (∂g∂τ )2; by dropping the other terms one obtains

f ≈ fg = e−
(τ+τ1)2

4 , (3.67)

where τ1 is an integration constant. By plugging this solution back into the equation, one

may check that this approximation indeed holds as long as g ≫ 1, i.e. for |τ + τ1| ≫ 1.

Notice that the constants of integrations in both cases can be absorbed into a shift

(τ0 or τ1) of the “time” variable τ . τ0 and τ1 are in general not equal — they differ by an

unknown constant of order one set by the matching of the two solutions. However, later

we will be interested in the large (τ + τ0) limit where such a constant can be neglected and

the τ0 and τ1 can be taken as equal.

Let us see now that this information is enough to reconstruct ρ(V ) almost for all V .

First of all, we need to know how f depends on z. From section 3.1 (see eq. (3.17)), we

know that f(τ ; z) has a branch cut at z = 0. We could perform the integral by closing the

contour around the cut, or by using the saddle point approximation. Let us start by seeing

if and where we can use the saddle point approximation.
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For large volumes the saddle point is expected to lie at small z (f ≃ 1), where the

exponential suppression in (3.8) is milder. In this case, near τ = 0, the linearized ap-

proximation holds, and we can use flin to relate τ0 to z. Next, in order to evaluate the

integral (3.8), we need to impose that the saddle point belongs to one of the regions where

our asymptotic solution works. Within the linearized regime there is no saddle point, so

we will check whether the saddle point exists in the gaussian region at τ + τ0 ≫ 1.

Let us see how far the outlined procedure takes us and let us begin to implement it.

Assuming that z at the saddle point is small (we will check this assumption later), we can

determine τ0 from the boundary condition

e−z = flin(τ = 0; z) ≈ 1 − eω−τ0 ⇒ τ0 ≈ 1

ω−
log z . (3.68)

We can now substitute this value for τ0 in fg and perform the integral (3.8) obtaining

ρ(V, τ) ≈ 1
√

2π|S′′(z0)|
e−S(z0) ≡ N e−S(z0) , (3.69)

and S(z) is given by

S(z) =
1

4

(

τ +
1

ω−
log z

)2

− V z . (3.70)

The saddle point condition S′(z0) = 0 reads

ω−z0V =
1

2

(

τ +
1

ω−
log z0

)

⇒ z0 ≈ 1

2ω−V

[

τ − 1

ω−
log

(

2ω−V
τ

)]

. (3.71)

We see that for relatively small volumes z0 is positive and small, which justifies our as-

sumption to use the linearized limit to match τ0 with z. As V grows, z0 moves towards

zero (see figure 10) and reaches the region where the gaussian approximation breaks when

V ≃ V , with V given by

V ≡ eω−τ = e
3Nc

2

1+
√

1−1/Ω . (3.72)

Even though we can not trust the gaussian approximation for V ≃ V , we can try to follow

the location of the saddle point, and we can see that it moves to negative values for V & V ,

reaching the location of the cut. This further justifies the approach we will take in the

regime V & V , that is to do the integral along the cut.

For the moment instead let us concentrate on the regime of volumes V . V , where we

can apply the saddle point approximation. Substituting the value of the saddle point back

into S(z0) we get

S(z0) ≈
1

4

(

τ − 1

ω−
log V

)2

= Ω



3Nc − 3N





1 +
√

1 − 1
Ω

2









2

. (3.73)

We see that τ + τ0 at the saddle point is large whenever S(z0) is large, i.e. at large N and

Nc as long as N . 2(Ω −
√

Ω(Ω − 1))Nc, (compatibly with the condition V . V ), so that
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V<V V<<V

Im z

Re z

ρ

VV

saddle point

saddle pointcut

V>V power−law tail
cut

Ω>1

Figure 10. Contour of the anti-Laplace transform integral in the z-plane (on the left) and prob-

ability distribution of the volume (on the right) for Ω & 1. For small volumes the integral can

be solved via saddle-point approximation and gives a gaussian-like distribution (in blue). Around

V = V (gray region) the saddle point hit the cut, which starts at z = 0, and our approximations

for the solution of the differential equation break down. At larger volumes there is no saddle point

anymore but the contour of integration can be deformed around the cut, giving a distribution tail

that follows a power-law in the volume (in red).

in the same regions we can trust the use of fg for the saddle point. The corresponding

value of S′′(x0) is

S′′(z0) ≈
2V 2(

√
Ω −

√
Ω − 1)2

log
(

V
V

) . (3.74)

As in the large Ω limit, S′′(x0) is large for large volumes. So we conclude that the proba-

bility distributions for the volume after inflation for V . V and for generic Ω ≥ 1 has the

form

ρ(V, τ) ≈ N e
− 1

4
Ω

“

1+
q

1− 1
Ω

”2h

log
“

V
V

”i2

= N e
−Ω

h

3N
2

“

1+
q

1− 1
Ω

”

−3Nc
i2

, V . V , (3.75)

where in the last step we used that 3N = log V . We can trust this expression as long as

log V & N ≫ 1 (see figure 10).

Let us now deal with the regime V & V . In this case, we have seen above that the

saddle point z0 enters the region very close to zero where we can not trust anymore the

gaussian approximation. In section 3.2, eq. (3.17), we saw that f(τ ; z) has a branch cut

at the point z = 0. Near the branch cut, for sufficiently small values of z, we can take the

linear approximation flin(τ ; z), which reads

flin(τ ; z) = 1 −
(

1 − e−z
)

eω−τ − σeω+τ0 (eω+τ − eω−τ )

≃ 1 − zeω−τ − σz
ω+
ω− eω+τ , (3.76)
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where in the last line we have used the approximate solution τ0 ≈ log(z)/ω− of eq. (3.68).

It is important to keep in mind that σ does not depend on z, but it is only fixed by the

boundary condition at τ → +∞.

Since ω+/ω− = ω2
+ in general is not integer, from eq. (3.76) we see that flin(τ ; z) has a

branch cut at z = 0. In the Ω ≫ 1 case we did not see this cut starting at z = 0 because, at

large Ω, ω+/ω− ≃ 4Ω. At small z, this is a singularity that appears only non-perturbatively

in 1/Ω and could not be seen in a perturbative expansion in 1/Ω as we did in the previous

section.

We can now perform the integral of the discontinuity along the cut. As in section 3.2,

we have to compute the imaginary part of f(τ ; z) along the cut and then integrate it

ρ(V, τ) =
1

2πi

∫ +∞

0
d|z| 2i Im[f(τ ;−|z|)]e−V |z| . (3.77)

Since f(τ ; z)eV z rapidly decreases when the real part of z is negative, at large enough

volumes there is an interesting regime where the integral is dominated by small values of

z, such that we can perform the integral using the linearized expression for f(τ ; z). In this

regime we have

Im[flin(τ ; z)]cut ∼ eω+τz
ω+
ω− . (3.78)

where we neglected order one coefficients. By performing the integral (3.77) we obtain

ρ(V, τ) ∼ 1

V

(

V

V

)

ω+
ω−

for V & V
ω+

ω−
, (3.79)

where we used that eω−τ = V . The condition on the right, that determines how large the

volume should be for this approximation to work, comes from imposing the validity of the

linear approximation for f(τ ; z). Indeed, the integral is dominated by values of z around

zs = ω+

ω−
1
V . For the linearized approximation to work flin(zs; τ) should be close to one. By

plugging in the value for zs in the expression for flin, we find

flin − 1 ≃ ω+

ω−

V

V
+ σ

(

ω+

ω−

V

V

)

ω+
ω−

, (3.80)

which implies that the integral on the cut is well approximated by the integral of the linear

solution for V &
ω+

ω−
V .

Similarly to the classical limit, the distribution for V . V is a gaussian in the number of

e-folding centered at V with still a quite narrow width, of order one e-folding. Our method

does not allow to reconstruct ρ(V ) in the vicinity of the average, V . V . V ω+/ω−.

Note, however, that close to the eternal regime ω+/ω− is of order one, so that this range of

volumes is not big. On the other hand at large Ω, when ω+/ω− is also large, we were able

to find the probability distribution up to V ≃ eV , where ρ(V ) was already exponentially

suppressed as e−Ω.

For V & V ω+/ω− the tail of the distribution in V is power law,

ρ(V, τ) ∼ V
−1−ω+

ω− ∼ V
−Ω

“

1+
q

1− 1
Ω

”2
−1

.

– 30 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
8

This tail agrees with our results in section 3.1 on the divergence of the multipoles (3.19).

As a cross-check of these results note that they imply that the average volume after

inflation is given by

〈V 〉 ≃ e

6Nc

1+
√

1− 1
Ω = V , (3.81)

in agreement with the direct computations in section 3.1 (eq. (3.25)) and in the appendix

(eq. (A.10)). We see that as Ω approaches the critical point the average number of e-foldings

shifts from Nc in the limit Ω → ∞ to 2Nc in the Ω → 1 limit.

3.4 Ω . 1: inside eternal inflation

We now begin to explore the regime of eternal inflation. As Ω crosses 1, the solution

of eq. (3.1) changes its form. The behavior of f(τ ; z) around f ≃ 1 is not overdumped

anymore. As discussed before, the normalization of the probability distribution drops below

1 in this regime.

We would like to follow this transition carefully. To this purpose, we take Ω = 1−ǫ with

0 < ǫ≪ 1 and study the volume probability distribution within the eternal inflation regime

by expanding in ǫ. We will follow the same strategy as in the previous two subsections.

We expect that the solution f(τ ; z) has a branch cut in the complex z plane, which allows

us to perform the inverse-Laplace transform either with a saddle point approximation, if

the saddle point is away from the cut, or along the cut itself.

If we decide to apply the saddle point approximation, we can concentrate on large

enough τ , so that the saddle point lies in the region f → 0 where the solution is well

approximated by

fg(τ ; z) = e−
(τ+τ0)2

4 , τ + τ0 ≫ 1 , (3.82)

(we will check later what is the corresponding range of volumes) and τ0 can be determined

in terms of z in the linearized regime (as long as z ≪ 1, as we will check below). The

linearized solution is now given by

flin(τ ; z) = 1 − σe
√

Ω(τ+τ0) cos
(√

Ω − 1(τ + τ0)
)

≈ 1 − σeτ+τ0 cos
(√
ǫ(τ + τ0)

)

. (3.83)

Note the oscillatory behavior of this linearized solution. By rescaling the constant σ, the

constant τ0 can be chosen equal to that in eq. (3.82). τ0 will be fixed below in terms of

the initial condition z; the constant σ on the other hand is fixed by matching with the

gaussian solution. Notice that, as before, σ does not depend on z. We do not know the

explicit value of σ, but we can argue that σ ∼ O(1). Indeed, the gaussian solution breaks

down when τ + τ0 ∼ O(1), afterwards the solution will reach the linear regime in a time

∆τ ∼ O(1); this means that the linear approximation breaks down when τ + τ0 ∼ O(1),

implying σ ∼ O(1).

Let us now start the computation by fixing the relation between τ0 and z via

e−z = flin(0; z) = 1 − σeτ0 cos
(√
ǫτ0
)

⇒ z ≈ σeτ0 cos
(√
ǫτ0
)

, (3.84)

which is valid as long as τ0 ≪ −1. Since the solution f is constrained to be between 0 and

1, in particular we need that for all τ in 0 ≤ τ . −τ0
flin(τ ; z) ≤ 1 , (3.85)
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which gives the lower bound

τ0 ≥ − π

2
√
ǫ
. (3.86)

Let us now study the analytic structure of f(τ ; z). Continuity in ǫ suggests that f(τ ; z)

has a branch cut at large enough negative z as before. As ǫ approaches zero the origin

of this cut zcut goes to z = 0 as well. To follow how zcut depends on ǫ at small ǫ note

that eq. (3.83) implies that flin(τ ; z) is a function of z through its dependence on τ0, upon

which it depends analytically. So, the only non-analyticity in z of f(τ ; z) can come from a

non-analyticity of τ0(z). The boundary condition (3.84) tells us that z(τ0) is analytic. In

inverting this relationship, therefore, the only non-analyticity can arise if dz/dτ0 vanishes

at some value of z,

0 =
dz

dτ0
=
σeτ0 (cos(

√
ǫτ0) −

√
ǫ sin(

√
ǫτ0))

1 − σeτ0 cos(
√
ǫτ0)

= 0 (3.87)

⇒ cos(
√
ǫτ0) −

√
ǫ sin(

√
ǫτ0) = 0

⇒ τ0 ≃ − π

2
√
ǫ
− 1 . (3.88)

By plugging this value into (3.84), we obtain

zcut ≃ −σ
√
ǫ

eVǫ
, (3.89)

where we defined

Vǫ ≡ e
π

2
√
ǫ . (3.90)

With this in mind, we can begin to evaluate the probability distribution using the

saddle point approximation. As in the previous section

ρ(V, τ) ≈ 1
√

2π|S′′(z0)|
e−S(z0) = N e−S(z0) , (3.91)

S(z) =
1

4
(τ + τ0)

2 − zV , (3.92)

where the saddle point z0 is determined by

S′(z0) =
1

2
[τ + τ0(z0)] τ

′
0(z0) − V = 0 ⇒ V =

(τ + τ0)e
−τ0

2σ [cos(
√
ǫτ0) −

√
ǫ sin(

√
ǫτ0)]

.

(3.93)

The above relationship implies that for volumes that are large but smaller than V = eτ , τ0
is large and negative, so that the linear approximation in (3.84) is justified. τ + τ0 is also

large and positive, so that we can trust the gaussian approximation for f(τ ; z0). As long

as τ0 & −π/(2√ǫ) = − log Vǫ, the denominator does not vanish, and τ0 is approximately

given by

τ0 ≈ − log V . (3.94)

The condition that τ0 & − log Vǫ then reads V . Vǫ. When plugged back into eq. (3.91)

the above solution gives the same form for ρ(V, τ) as in the case Ω ≥ 1, namely

ρ ≈ N e−
1
4
(τ−logV )2 for 1 ≪ V . Min{V , Vǫ} , (3.95)
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where

N =
1 +

√

1 − 1
V

2π

√

log

(

V

V

)

. (3.96)

There are two interesting cases: V . Vǫ and V & Vǫ. Let us start with the case

V . Vǫ. As V reaches V , τ0 + τ becomes of order one, and we can not trust anymore the

gaussian solution. For this reason, in exploring the regime V & V , analogously to what we

did in the case of Ω ≥ 1, we close the contour along the cut in the negative real z axis (see

figure 11), and perform the integral of the imaginary part of f(τ ; z)ezV

ρ(V, τ) =
1

2πi

∫ +∞

zcut

d|z| 2i Im[f(τ ;−|z|)]e−V |z| . (3.97)

Because of the exponential suppression, the integral is dominated by |z| ∼ 1/V > |zcut|
for V < Vǫ. In this regime, |z| & |zcut|, and from eq. (3.84) we have τ0 ∼ log(z/σ). The

condition |z| ∼ 1/V amounts to Re[τ0] ∼ − log V (notice that Im[τ0] ≃ iπ). Therefore in

this regime τ + Re[τ0] ∼ log(V /V ) . −1, and we can use the linearized approximation

flin(τ ; z) for f(τ ; z). The imaginary part of flin(τ ; z) on the negative z axis is rather

complicated. However, we can approximate cos(
√
ǫ(τ + τ0)) with a constant of order one.

Then, the integral (3.97) can be estimated as

ρ(V, τ) ∼
∫ +∞

zcut

d|z| eτz e−V |z| ∼ V

V 2
, V . V . Vǫ , (3.98)

where we ignored constants of order one. We see that in this interval of volumes ρ(V, τ)

decreases as 1/V 2, exactly matching the analogous regime we found for Ω & 1.

As V keeps increasing and becomes larger than Vǫ, the solution to the boundary

condition eq. (3.84), with z ∼ 1/V , gives τ0 ≃ −π/(2√ǫ) = − log Vǫ. In this case, the

integral on the discontinuity becomes dominated by the beginning of the cut, and we

obtain

ρ(V, τ) ∼
∫ +∞

zcut

d|z| eτ 1

Vǫ
e−V |z| ∼ V

Vǫ

1

V
e−

σ
e

√
ǫV/Vǫ , V . Vǫ . V , (3.99)

where again we have ignored constants of order one, and where we have used that zcut ≃
−σ√ǫ/(eVǫ). For volumes larger than Vǫ, ρ(V, τ) decreases exponentially (this exponential

tail was also recently found in [32]).

Notice how the two solutions (3.98) and (3.99) glue together: for V . Vǫ, τ0 decreases

like − log V giving a 1/V 2 behavior to ρ(V ); when the volume reaches ∼ Vǫ, τ0 freezes at

a value ∼ (− log Vǫ) = −π/(2√ǫ) and the exponential tail (e−
σ
e

√
ǫ V/Vǫ) kicks in. Notice

also that the point, where the exponential tail enters, goes to infinity for ǫ → 0 smoothly

matching the result for Ω ≥ 1.

Let us now concentrate on the opposite regime. Namely, as ǫ increases leaving τ fixed,

at some point Vǫ becomes smaller that V . In this case, for V . Vǫ, we still have the result

of eq. (3.95). However, for larger V , τ0 does not continue to decrease as − log V , because

in this case the denominator of eq. (3.93) goes to zero and determines the behavior of τ0.
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V<V V<<V

Im z

Re z

ρ

VV

saddle point

saddle pointcut

V>V

V<V<Vε

ε zcut

Vε

power−law
cut

exp tail
cut

V<V V<<V

Im z

Re z

ρ

VV

saddle point

saddle point
zcut

εε
V>>Vε V>V

Vε

ε
exp tail

Ω=1−ε

Ω=1−ε (V >V)ε

(V <V)ε

Figure 11. Contours of the anti-Laplace transform integrals in the z-plane (on the left) and

probability distributions of the volume (on the right) for Ω = 1 − ǫ.

First case
√
ǫ < π/(2τ) (first row): at small volumes the integral can be solved via saddle-

point approximation and gives a gaussian-like distribution (in blue). Around V = V (gray region)

our approximations for the solution of the differential equation break down. At larger volumes

the contour of integration can be deformed around the cut. As long as V . Vǫ the integral is

dominated by a region that is much larger than the distance zcut between the beginning of the

cut and the origin, the integral is thus equivalent to the integral over a cut that starts at z = 0

(dotted red contour) giving a power-law behavior for ρ(V, τ) (in light red). At V & Vǫ, the contour

integral “sees” the distance zcut between the beginning of the cut and the origin, and it produces

an exponential tail (in dark red).

Second case
√
ǫ > π/(2τ) (second row): this time the saddle point works for all the volumes; for

V . Vǫ it produces a gaussian-like tail that is converted into an exponential tail for V & Vǫ.
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In particular we can expand the denominator of eq. (3.93) around τ0 = −π/(2√ǫ)

2σ
[

cos(
√
ǫτ0) −

√
ǫ sin(

√
ǫτ0)

]

≈ 2σ
√
ǫ

(

τ0 +
π

2
√
ǫ

+ 1

)

, (3.100)

that indeed vanishes for τ0 = − π
2
√
ǫ
− 1. We can now substitute eq. (3.100) into eq. (3.93)

and get

τ0(z0) ≈ − π

2
√
ǫ
− 1 +

e
(

τ − π
2
√
ǫ

)

2σ
√
ǫ

Vǫ
V
, (3.101)

where the third term in the expression for τ0 is small for V ≫ Vǫ. We see that τ0 approaches

asymptotically from the positive side the value τ0 = − π
2
√
ǫ
− 1. In this regime, τ + τ0 is

always larger than one and positive, and the gaussian approximation to our solution holds.

Further, by substituting (3.101) in (3.93), it is straightforward to see that z0 moves on the

real axis and approaches zcut from the positive side, reaching zcut only as V → ∞. This

tells us that for Vǫ . V , unlike in all the former cases, the saddle point approximation

holds for all V ’s. Plugging in the expression for the saddle point integral we get

ρ(V, τ) ≈ N e
− 1

4

“

τ− π
2
√
ǫ

”2
−σ
e

√
ǫ V/Vǫ , V & Vǫ , (3.102)

with

N =
e3/2

√

8πσ
√
ǫ

(

Vǫ
V

)3/2 1

Vǫ

∣

∣

∣

∣

log

(

V

Vǫ

)∣

∣

∣

∣

3/2

. (3.103)

We still have an exponential tail, with the same behavior as we found in the case in which

V was smaller than Vǫ. This is a very intuitive result: as ǫ increases, the exponential tails

becomes relevant at smaller and smaller volumes, and it eats away the main part of the

distribution (see figure 11). This also offers a consistency check between the two ways in

which we are computing the inverse Laplace-transform: the saddle point approximation

and the integral along the cut.

Finally the normalization of ρ(V, τ) changes smoothly when crossing the critical point

Ω = 1

Pext = f(τ ; 0) ≈ 1 − σ
√
ǫ τ e

τ− π
2
√
ǫ = 1 − 6σ

√
ǫNc

e6Nc

Vǫ
. (3.104)

In the limit ǫ → 0 the normalization goes to one, but when the exponential tail starts to

remove the bulk of ρ(V, τ) (i.e. Vǫ ∼ 〈V 〉|Ω=1 = e6Nc) the volume normalization quickly

drops to 0.

For ǫ = O(1) our approximations break down and the calculation becomes more com-

plicated: the bound on τ0 in eq. (3.86) becomes of O(1) and both the saddle-point ap-

proximation and the integral along the cut are dominated by the region of z where the

linearized approximation no longer applies. However we can still say something about the

normalization of the volume distribution Pext. For large τ the solution will still be in the

gaussian regime, and we can write f(τ ; z) as

f(τ ; z) = k(Ω, z)e−
(τ+τ0(Ω,z))2

4 , (3.105)
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where k and τ0 are unknown constants that depend on Ω and z. From eq. (3.10) we know

that

Pext =

∫ ∞

0
ρ(V )dV = f(τ ; 0) = k(Ω, 0)e−

(τ+τ0(Ω,0))2

4 . (3.106)

This formula does not tell us the explicit dependence on Ω of Pext but since τ = 6Nc

√
Ω,

we can extract the dependence of Pext on the classical number of e-foldings Nc (equivalent

to the initial position of the inflaton). For large Nc we get

Pext ∼ e−Ω(3Nc)2 = e−Ω(log Vc)2 . (3.107)

The probability not to eternally inflate when Ω < 1 goes to 0 exponentially with the square

of the classical number of e-foldings.

Finally, note that the exponential behavior of ρ(V ) at V > Vǫ implies that the moments

of the distribution ρ(V ) do not diverge at Ω < 1. Naively, this disagree with the results

of [16]. However, there is no conflict. The point is that here we calculate moments using

the probability distribution ρ(V ) obtained by taking the infinite time limit. At Ω <

1 its normalization is less than one, indicating that there is a contribution localized at

infinity that is not taken into account (cf. with the discussion of the two-site example in

section 2.1.1). On the other hand, in the calculation of [16] one first finds the moments and

only then takes the infinite time limit. The latter procedure effectively takes into account

the contribution at infinity producing diverging moments at Ω < 1.

3.5 Ω = 0: Deeply inside eternal inflation

We are finally led to study the extreme limit of eternal inflation: the case Ω = 0, which

corresponds to a completely flat inflationary potential.

The job is quite easy in this case: the differential equation for f simplifies and we can

find an explicit solution. With vanishing Ω the solution to eq. (3.1) that stops on the top

of the potential in an infinite time reads

f(τ ; z) = e
1
2
− 1

4(τ+
√

2+4z)
2

. (3.108)

Then the probability distribution is

ρ(V, τ) =
1

2π

∫ 0++i∞

0+−i∞
dz e

1
2
− 1

4(τ+
√

2+4z)
2
+zV , (3.109)

and to evaluate this integral we can use the saddle point method as before (actually, since

the integral is gaussian in
√

2 + 4z, this procedure is exact).

The saddle point condition in this case reads

S(z) = −1

2
+

1

4

(

τ +
√

2 + 4z
)2 − zV , (3.110)

⇒ S′(z0) = −V +

(

τ√
2 + 4z0

+ 1

)

= 0 , (3.111)

⇒ z0 =
τ2

4(V − 1)2
− 1

2
, (3.112)
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so that

S(z0) =
V

(V − 1)

τ2

4
+
V − 1

2
, (3.113)

S′′(q0) =
2(1 − V )3

τ2
, (3.114)

and the expression for the probability distribution is

ρ(V, τ) =
τ√

4π(V − 1)3/2
e
−V−1

2
− V

(V−1)
τ2

4 . (3.115)

The tail of the distribution is again exponential, and this nicely matches the Ω ≤ 1 case

we studied before.

We can easily also calculate the normalization for ρ(V, τ),

∫ ∞

0
dV ρ(V, τ) = e

− τ2

4
− τ√

2 = f(τ ; 0) , (3.116)

which matches with the approximate formula of the previous section. As long as Ω ≪ 1 the

corrections from the friction term in the differential equation are small, so that eq. (3.115)

is a good approximation in this regime.

3.6 Realistic models: finite barrier effects and slow roll corrections

So far, we worked in the approximation of an infinitely long inflaton potential and treated

Ω and H as constants. In a realistic situation both these assumptions do not hold: Ω and

H change slowly as functions of the inflaton field and the latter can vary only in a finite

range. This may be, for example, a consequence of either quantum gravity effects, if the

potential grows monotonically up to high values of the field, or a reheating region if the

potential has a maximum, or the steepening of the potential itself at a certain region. Let

us discuss at the qualitative level how these effects change our results.

Let us begin with the consequences of the finite range of the inflaton field. The details

of the underlying physical mechanism are not relevant for our qualitative discussion, so

we introduce this effect by including a reflecting barrier in the stochastic process at large

values of the inflaton field. In terms of the mechanical problem this implies that we are

now looking for a solution that stops at a finite time τb (see (3.6)).

The presence of a barrier affects our results in two different ways: it changes the tail

of the probability distribution and it slightly shifts the critical value Ωc for the transition

to the eternal regime. Let us start with the first effect. In the non-eternal regime, we have

seen that the probability distribution is peaked around a volume of order e3N , where N is

given by (1.6) and changes between Nc for large Ω and 2Nc at the transition point Ω = 1.

Given the relation Nc = τ/(6
√

Ω) this implies that the typical trajectory undergoes field

excursions at most of order τ up the inflaton potential. Hence putting a barrier at τb does

not affect the bulk of the trajectories, and therefore the probability distribution as long

as the barrier is far enough from the starting point τ ≪ τb. Still, the barrier cuts the

trajectories that would have otherwise crossed it, and therefore we expect an additional
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suppression of the tail of the distribution for volumes corresponding to τ & τb, that is for

N & Nb, where Nb ≡ τb/(6
√

Ω).

As a result, for N > Nb the probability distribution becomes exponentially suppressed

as a function of the volume as opposed to the V −1−ω+/ω− behavior that we found. There

are several ways to see that the barrier indeed leads to the exponential suppression. For

instance, as we saw in section 3.1, the function f(z) is analytic at z = 0 when the barrier

is present. Consequently, the whole integration contour for the Laplace transform can be

deformed in the region with Re(z) < 0, and at the large volumes the integral in (3.8) decays

as e−Re(zcut)V , where zcut is the singularity of the function f at the smallest distance from

the real axis.

In fact, recently an exponential tail of the volume distribution in the eternal regime

was calculated in [32]. By extending the analysis of [32] into the non-eternal regime we

verified that, as a result, the exponential suppression sets in for a number of e-foldings of

order Nb. We do not provide details of this analysis here, as it would require an extensive

introduction into methods of [32] and would take us too far away from the main line of our

paper (instead, in the concluding section 4, we will present an intuitive argument explaining

the origin of this exponential behavior). This also agrees with what we found in the two

site models, where the probability distribution decreases exponentially at large volumes

both in the eternal and the non-eternal regime.

Notice that, since Ω > 1 implies Nc < SdS/12 (see eq. (1.4)), in the same regime we also

have an upper bound on Nb, which has to satisfy the same condition Nb < SdS/12. This

also means that the behavior of ρ(V ) for volumes larger than eSdS/2 is always exponential

in the volume, i.e. ∼ e−constV . This property of the probability distribution will be further

discussed in the next section in connection with the bound on the number of e-foldings.

The second effect of the barrier is related to the first. The presence of the barrier cuts

out some of the trajectories producing the largest volumes and thus may slightly delay the

entrance in the eternal regime to Ωc < 1. This shift can be calculated in the following

way. Since Ωc is defined as the value of Ω where Pext starts deviating from one, and since

Pext = f(τ ; 0), we need to study the solution f for z → 0. Consider some fixed Ω < 1, and

let us recall that in this case the oscillator is not anti-over-damped (eq. (3.1)). Around

f = 1, we can linearize the potential and obtain an oscillating solution with a period

T =
2π√
1 − Ω

, (3.117)

independently of the initial velocity, as the oscillations are harmonic (see the dotted lines of

figure 7b). Consequently, in the linear regime it takes an amount of time equal to T/4 for

the solution to come at rest. The returning force for the actual unharmonic potential (3.11)

is smaller than for the corresponding harmonic potential, so it always takes longer than

T/4 to come at rest (and can take arbitrarily long, as at Ω < 1 there exists a solution that

stops at the top of the hill in an infinite time). Consequently, if the barrier is close enough,

τb < T/4, there is no solution with the appropriate boundary condition, ḟ(τb; 0) = 0 (except

the trivial solution f(τ ; 0) = 1), even at Ω < 1 and inflation is not eternal. This argument
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implies that the critical value for Ω is determined by

τb =
π

2
√

1 − Ωc
⇒ Ωc = 1 −

(

π

2τb

)2

. (3.118)

Note that for Ω . Ωc, the volume where the barrier effect sets in and changes the tail

of the distribution is of order V . V 2
b = e6Nb = eπ/2

√
1−Ωc , that is always exponentially

larger then the volume Vǫ, where the exponential suppression found in section 3.4 sets in.

Consequently, in the eternal regime the barrier affects only the tail of the distribution that

is already suppressed as e−constV .

Let us now discuss how the dependence of Ω and H on the inflaton field changes our

results. Let us see first when this dependence become important. Throughout this paper

we have been interested in what happens close to the eternal regime in the limit MPl ≫ H.

In other words we have taken the limit H/MPl → 0, while keeping Ω fixed. This limit

implies that we have been working in the extreme slow roll regime. Indeed, in this limit

one has,
Ḣ

H2
∼ Ω

H2

M2
Pl

→ 0 .

However, this does not imply that one can completely neglect the field dependence of Ω and

H as we have another large parameter — the variation of the inflaton field or, equivalently,

the number of e-foldings. For instance, by taking the variation of the Friedmann equation,

one has

M2
PlH∆H ∼ V ′∆φ

and the condition that H can be treated as a constant reads

∆H

H
∼ V ′∆φ

M2
PlH

2
∼ Ω

H2

M2
Pl

Nc . 1 . (3.119)

So all our results apply if one takes the limit H/MPl → 0 while keeping Ω fixed and Nc

small enough such that the inequality (3.119) holds. Note that (3.119) does not prevent

us from considering arbitrarily large Nc if H/MPl is taken to be sufficiently small.

Nevertheless, one may wonder what happens to the shape of the volume probability

distribution for longer inflaton trajectories, such that the variation of H (and Ω) has to

be taken into account. In this case the coefficients in front of the different terms in the

mechanical equation acquire a φ dependence [35]. This clearly may affect the details of

the shape of the probability distribution. However, as long as H ≪ MPl we still expect

these effects to be small, with ρ(V ) still sharply peaked around the average number of

e-foldings N , which takes values between Nc and 2Nc. One can check this statement by

using the techniques of section 3.1 to calculate the average and the higher moments of the

distribution. We can consider, for instance, the linear differential equation (3.21) for the

average in the generic case, where Ω and H can be functions of the inflaton field φ (or

equivalently of τ). In the variable τ , defined now as

τ ≡ 6

∫ √
ΩdNc , (3.120)
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the differential equation for the average is the same as in eq. (3.21) with a small correction

(of order H2/M2
Pl) to the anti-friction term, which now depends on τ implicitly via Ω.

Since in the non-eternal regime the anti-friction term is minimized at Ω = 1, by setting

Ω = 1 we would obtain a trajectory that has a faster velocity at each moment of time in

order to stop at the same moment as required by the boundary condition (3.23). It follows

that the average is always smaller than eτ , which, from eq. (1.3), is smaller than eSdS/2.

This implies that the bound N < SdS/6 still holds.

In fact, we can also find an approximate expression for the average volume in the

general case. Namely, for non-constant Ω, we can replace (3.25) by

lim
τb→∞

〈V 〉 = e
R

ω−dτ , (3.121)

which is a good approximate solution as soon as ∂τΩ ≪ Ω. This gives for the average

number of e-foldings

3N =

∫

ω−dτ . (3.122)

Analogous arguments can be applied for higher moments; as a result we see that the

distribution remains peaked around the average value that takes value between Nc and

2Nc.

4 Discussion

To summarize, in this paper we calculated explicitly the probability distribution ρ(N) for

the volume of the Universe after a period of slow-roll inflation (as before, by the number of

e-foldings N we understand one third of the logarithm of the total volume produced during

inflation, N = 1
3 log V ). Our results cover both the eternal and the non-eternal regime. Let

us start this concluding section by summarizing these results and then by explaining how

all different kinds of behavior we found for ρ(N) have an intuitive physical explanation.

In general, the function ρ(N) exhibits three qualitatively different regions. Namely,

in the non-eternal regime Ω > 1 it is peaked at N ∼ N , where the average number of

e-foldings N is given by

N =
2Nc

1 +
√

1 − Ω−1
. (4.1)

For N . N it has a gaussian form,

ρ(N) ∝ e−
(3N−3N)2

2σ2 , (4.2)

with a width σ given by

σ2 =
2

Ω(1 +
√

1 − Ω−1)2
. (4.3)

The behavior changes at N & N where the probability distribution becomes exponential

in N (or, equivalently, power-law in the volume V ),

ρ(N) ∝ e
−6ΩN

“

1+
q

1− 1
Ω

”

= V
−2Ω

“

1+
q

1− 1
Ω

”

. (4.4)
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Finally, if a barrier preventing the inflaton to take arbitrary large values is present, this

power-law tail becomes further suppressed at larger volumes and turns into an exponential

in the volume

ρ(N) ∝ e−ce
3N

= e−cV . (4.5)

This behavior sets in at N ∼ Nb, where Nb is the number of e-foldings on the classical

inflaton trajectory from the barrier till reheating.

What changes in the eternal regime, Ω < 1, is that the exponential behavior (4.5) sets

in at N ≃ π/6
√

1 − Ω even if the barrier is absent. If (1−Ω) is not too small this happens

at N < N so that the gaussian regime (4.2) interpolates directly to the superexponential

one (4.5) without intermediate exponential behavior (4.4).

It is rather straightforward to understand the origin of the above three different types

of behavior for ρ(N) at the intuitive level. First, to produce a small number of e-foldings

N ≪ Nc, the inflaton field during the first few e-foldings needs to perform a jump in the

whole volume to a value of φ corresponding to an average number of e-folding equal to

N . The inflaton fluctuations away from the classical trajectory follow, at early times, a

gaussian distribution (because of the random walk) and the size of the jump in field space

is directly proportional to (N − N), so the probability of such a jump is suppressed by

e−c(N−N)2 (c is a constant) in agreement with our result (4.2) at small volumes.

On the other hand, the least expensive way to produce a large number of e-foldings

N ≫ Nc is for one Hubble patch to go high up the potential, till values of the field corre-

sponding to have a classical trajectory with N e-foldings. If such a fluctuation happened,

the probability to produce at least N e-foldings becomes of order one. To estimate the

probability of such a fluctuation, note again that the probability distribution for the infla-

ton fluctuations ∆φ around the classical trajectory is gaussian. The crucial difference with

the small volume case is that now it is not necessary for the fluctuation to happen in a short

period of time, and the variance of the inflaton distribution grows linearly as a function

of time t. As a result, the probability p of the fluctuation is maximized for times t corre-

sponding to order N e-foldings, and depends exponentially on N , p ∝ e−c1∆φ2/t ∝ e−c2N

in agreement with (4.4). This argument is essentially identical to the one provided in [16]

to explain why high enough moments of the volume distribution diverge in the non-eternal

regime if no barrier is introduced.

The last argument fails at sufficiently large volumes both in the presence of a barrier

at high values of the inflaton field and in the eternal regime. In the first case it fails

because there is a limit on the maximum length of the classical trajectory, while in the

second because even if a fluctuation to high values of the inflaton field happened, one

is not guaranteed to end up with a finite number of e-foldings (in fact, the higher the

fluctuation is the smaller is the probability for inflation to terminate). In both cases one

ends up with getting a superexponential suppression of the probability distribution at

large volumes, (4.5). This can roughly be explained by the necessity for an exponential

number of independent and rather improbable events (corresponding to the individual

Hubble volumes produced during inflation) to happen. Namely, in the eternal regime,

inflation should terminate for ∼ e3N Hubble patches and all their children (while in the

– 41 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
8

non-eternal regime the probability for this to happen is equal to one). In the non-eternal

case with a barrier, forN ≫ Nb, an order ∼ e3N Hubble patches have to live an anomalously

long time, corresponding to a number of e-foldings much larger than Nb.

To summarize, we see that our results on the shape of the probability distribution of

the reheating volume not only pass a number of consistency checks with results obtained

by different methods, but also can be understood in a rather intuitive level. We believe

making the explicit form of the volume probability available may help to understand the

geometry of eternal inflation and offers also a natural “theoretical” observable that can be

useful in further studies of eternal inflation.

A further motivation for doing our calculation was to establish whether a quantum

version of the bound

3N ≤ cSdS , (4.6)

exists and, if so, whether this bound can be made sharp, i.e. whether there is a concrete

value for the coefficient c in (4.6). Our results provide a positive answer to both questions.

Namely, we find that the quantum version of the bound (4.6) can be formulated as follows:

The probability for slow-roll inflation to produce a finite volume larger than eSdS/2,

where SdS is de Sitter entropy at the end of the inflationary stage, is suppressed below the

uncertainty due to non-perturbative quantum gravity effects.

Indeed, our results imply that an inflaton trajectory with more than 2Nc e-foldings

and such that inflation terminates globally in the entire space is exponentially unprobable,

∼ e−N . Given that in the non-eternal regime we have the bound (1.4), we conclude that

the probability for slow-roll inflation to last more than SdS/6 e-foldings and to terminate

globally in the entire space is smaller than the uncertainty coming from non-perturbative

quantum gravitational effects (∼ e−SdS). In fact, there is an even stronger statement that

follows from the observation of section 3.6 about the bound on the barrier position Nb.

Indeed, as long as Ω & 1, Nb is smaller than SdS/12, which implies that the transition to

the regime where ρ(V ) drops exponentially with the volume (e−const·V ) starts exactly when

the produced volume starts violating the bound, V > eSdS/2 > e6Nb . Consequently, the

probability to produce much larger volumes V ≫ eSdS/2 is super-exponentially suppressed,

∼ e−e
SdS . In turn this produces a super-exponentially small probability to produce volumes

V ≫ eSdS/2.

We believe this provides a non-trivial test of the de Sitter complementarity idea. How-

ever, one may wish to go further and ask whether the particular value c = 1/2 that we

found provides any insights into how the de Sitter complementarity works. Of course, all

our calculations were done in the limit where gravity is non-dynamical, therefore it is not

clear whether the value c = 1/2 really tells us something fundamental about the proper-

ties of de Sitter space. Let us however assume that it does and speculate on what would

be the interpretation of this particular value. Recall that the original motivation for the

bound (1.1) is coming from the idea that the black hole complementarity applies in the

de Sitter case as well, so that the global effective field theory description of the FRW slices

breaks down and information about the outside observers gets released in de Sitter fluc-

tuations. Then, if inflation ends, there is the danger of violating the linearity of quantum
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mechanics by creating a “quantum xerox”—one can see the information twice, first holo-

graphically in the de Sitter fluctuations and later in a direct way when the corresponding

mode comes in.

Recall that the analogous paradox could potentially arise in the black hole case after

one measures more than Sbh/2 Hawking quanta (Sbh is the black hole entropy). In this

case, the factor 1/2 arises because, as pointed out by Page [38], if one measures k degrees

of freedom of a larger system described by n degrees of freedom, generically, the resulting

density matrix looks thermal and carries less than a single bit of information as long as

k < n/2.

This does not give rise however to any paradox: indeed, if one waits a long enough

time outside the black hole, so that ∼ Sbh/2 Hawking quanta are emitted, it is impossible

to observe the same information a second time inside the black hole, since it gets destroyed

by the curvature singularity.

It is tempting to interprete our result by saying that the de Sitter analogue of one

Hawking quanta is produced every time a new Hubble patch is created from the volume

where the observer lives (i.e every 1/3 of e-folding). Then the quantum-xerox problem

would arise after SdS/6 e-foldings but it does not because of the bound.

Although it may sound quite natural, this interpretation raises a number of issues.

First, as argued in [39], a single observer in eternal de Sitter can never run into the xerox

paradox, as the largest amount of entropy that can be stored within a single causal patch

is bounded by the Bekenstein area of the largest black hole that fits in a single patch. The

latter is equal to SdS/3 and smaller than the minimal amount (SdS/2) required to extract

the first bit of information.

However we are in a rather different situation here, as inflation eventually terminates.

Therefore should the bound be not there, one would have the possibility to measure SdS/4

quanta, give them to a friend who leaves for a different Hubble patch, then measure other

SdS/4 quanta and, after inflation ends, the two could meet and in this way collect SdS/2

quanta in total. Then the bound suggests that for the purpose of extracting information it

is legitimate to collect quanta in one Hubble patch and keep them until the end of inflation

in another. However, this reasoning also implies that it should not be possible to use

quanta collected in different Hubble patches for extracting information — otherwise one

would be forced to conclude that the actual bound on the number of e-folding is much

stronger, N . log S.

Notice also that if inflation does not terminate everywhere, then there is no problem

of duplication of information if one observer lasts in the inflationary phase for longer than

SdS/6 e-foldings: when the observer undergoes reheating and enters the Minkowski phase

she is never able to see all the rest of the de Sitter space.

Another puzzle with drawing the parallel between the factor 1/2 in our bound and the

one in the Page argument is that, if there are n light species around then, likely, the rate

of how fast the information gets released is proportional to the number of species (at least

this is so in the black hole case). On the other hand our bound does not depend on n (it

could if the light species are scalars but does not for other fields).
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Finally, it is worth mentioning yet another reason why one should be cautious in taking

the value c = 1/2 too seriously. Namely, here we focused on slow-roll models of inflation. In

the effective field theory language of [37] these correspond to the models where the inflaton

perturbations have sound velocity cs equal to one. The classical version of the bound (1.1)

was proven in [22] for general inflationary models, including those with small cs. In fact

at small cs the classical bound becomes even stronger, Nc . c5sSdS. However the reason it

arises is somewhat different. At small sound velocities the strong coupling regime, where

the effective field theory breaks down, sets in always before the eternal inflation regime.

So the bound (1.1) in this case follows from the requirement that the system is weakly

coupled and the null energy condition is not violated. Consequently, at the present stage

we cannot exclude the possibility of violating the bound in the strongly coupled regime,

although this possibility appears highly unlikely.

To summarize, we proved the quantum version of the bound on how long slow-roll

inflation can last without becoming eternal. The existence of such a bound (eq. (4.6))

provides non-trivial support to de Sitter complementarity ideas, while it is still unclear

whether the value of the coefficient c = 1/2 appearing in the bound that we found has

a definite physical meaning. Before finishing, it is worth stressing that we believe that,

independently of the answer to the last question, explicit calculations providing a detailed

quantitative understanding of the transition to the eternal inflation regime, like those we

preformed in the current paper, have an independent value. Indeed, it appears to us that a

detailed understanding of the geometry and the dynamics of the eternally inflating Universe

might be an important step to reach a final verdict on the puzzling issues raised by the

observation of the cosmic acceleration and the string landscape.
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A Volume average from the inflaton stochastic equation

As a cross-check of the method used in the paper, derived from the bacteria model, in this

appendix we present an alternative calculation of the average volume 〈V 〉 directly from the

inflaton equations. The result is an improvement of a very similar computation performed

in [16]. By definition the average of the volume is given by

〈V 〉 =

∫ ∞

0
dV V ρ(V, φ) , (A.1)
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where the adimensional variable V is the volume expressed in units of the initial volume.

This reduces to compute

〈V 〉 =

∫ ∞

t0

dt e3Htpr(t) , (A.2)

where pr(t) is the probability that at a given point ~x the field reaches the reheating value

φr at time t. By translational invariance this probability does not depend on the point

~x. Now the problem is reduced to compute pr(t). The latter is related to the probability

P (φ̄, t) for the inflaton to have a value φ̄ at time t by

pr(t) = − d

dt

∫ +∞

φr=0
dφ̄ P (φ̄, t) . (A.3)

P (φ̄, t) can be found by solving the classic stochastic diffusion equation [10, 11, 34]

∂σ2 P̃ (ψ, σ2) =
1

2
∂2
ψP̃ (ψ, σ2) . (A.4)

where P̃ (ψ, σ2) ≡ P (φ̄, t) and

ψ ≡ φ̄− φ− φ̇t (A.5)

is a Gaussian field with variance σ2 that grows linearly with time

σ2 =
H3

4π2
t . (A.6)

ψ represents the fluctuations around the classical motion and undergoes a random walk.

In the case the inflaton lives in a infinitely long potential and the reheating point is at

φr = 0, the solution of (A.4) is given by

P̃ (ψ, σ2) =
1√

2πσ2

(

e−
ψ2

2σ2 − e−8π2 φ̇ φ

H3 e−
(ψ+2φ)2

2σ2

)

, (A.7)

which implies

pr(t) =
√

2π
φ

(H t)3/2
e−2π2 (φ+φ̇ t)2

H3t . (A.8)

We see that the integral in (A.2) converges only when

Ω ≡ 2π2

3

φ̇2

H4
≥ 1 . (A.9)

This is the first signal that the system has entered the eternal inflation regime. For Ω ≥ 1,

we can explicitly perform the integral in (A.2), to obtain:

〈V 〉 = e
−2π

„

2πφ̇+
√

(2πφ̇)2−6H4

H2

«

φ
H

= e2
√

6π(
√

Ω−
√

Ω−1) φH =

{

Vc , Ω ≫ 1

V 2
c , Ω → 1

, Ω ≥ 1 .

(A.10)

where

Vc ≡ e

q

6π2

Ω
φ
H ,

is the volume in the classical limit. The result, which agrees with eq. (3.81), is plotted in

figure 8, where we can see the singular behavior at Ω = 1.
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